[1] VOLPI M, TUIA D, BOVOLO F, et al. Supervised change detection in VHR images using contextual information and support vector machines[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 20:77-85. [2] 季顺平, 魏世清. 遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J]. 测绘学报, 2019, 48(4):448-459. DOI:10.11947/j.AGCS.2019.20180206. JI Shunping, WEI Shiqing. Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4):448-459. DOI:10.11947/j.AGCS.2019.20180206. [3] ABBAS A W, MINALLH N, AHMAD N, et al. K-means and ISODATA clustering algorithms for landcover classification using remote sensing[J]. Sindh University Research Journal-SURJ (Science Series), 2016, 48(2):315-318. [4] 郭军. 引入上下文信息的可见光遥感图像目标检测与识别方法研究[D]. 长沙:国防科学技术大学, 2014. GUO Jun. Research on object detection and recognition for visible remote-sensing images by introducing context[D]. Changsha:National University of Defense Technology, 2014. [5] 李爽, 丁圣彦, 钱乐祥. 决策树分类法及其在土地覆盖分类中的应用[J]. 遥感技术与应用, 2002, 17(1):6-11. LI Shuang, DING Shengyan, QIAN Yuexiang. The decision tree classification and its application research in land cover[J]. Remote Sensing Technology and Application, 2002, 17(1):6-11. [6] 伍广明, 陈奇, SHIBASAKI R, 等. 基于U型卷积神经网络的航空影像建筑物检测[J]. 测绘学报, 2018, 47(6):864-872. DOI:10.11947/j.AGCS.2018.20170651. WU Guangming, CHEN Qi, SHIBASAKI R, et al. High-precision building detection from aerial imagery using a U-net like convolutional architecture[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):864-872. DOI:10.11947/j.AGCS.2018.20170651. [7] AICH S, VAN DER KAMP W, STAVNESS I. Semantic binary segmentation using convolutional networks without decoders[J]. arXiv preprint arXiv:1805.00138, 2018. [8] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. [9] MARMANIS D, WEGNER J D, GALLIANI S, et al. Semantic segmentation of aerial images with an ensemble of CNNs[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, Ⅲ-3:473-480. [10] MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2):645-657. [11] RONNEBERGER O, FISCHER P, BROX T U. U-Net:Convolutional networks for biomedical image segmentation[C]//Proceedings of Medical Image Computing and Computing and Computer-Assisted Intervention, 2015, 9351:234-241. [12] BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. [13] NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile:IEEE, 2015:1520-1528. [14] LIN Guosheng, MILAN A, SHEN Chunhua, et al. Refinenet:Multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI:IEEE, 2017:1925-1934. [15] ZHANG Hang, DANA K, SHI Jianping, et al. Context encoding for semantic segmentation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018:7151-7160. [16] YANG Maoke, YU Kun, ZHANG Chi, et al. DenseASPP for semantic segmentation in street scenes[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018:3684-3692. [17] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4):834-848. [18] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338. [19] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ:IEEE, 2016:3213-3223. [20] CAESAR H, UIJLINGS J, FERRARI V. Coco-stuff:Thing and stuff classes in context[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018:1209-1218. [21] ABRAHAM N, KHAN N M. A novel focal tversky loss function with improved attention U-Net for lesion segmentation[C]//Proceedings of 2019 IEEE International Symposium on Biomedical Imaging (ISBI 2019). Venice, Italy:IEEE, 2019:683-687. [22] WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[J]. arXiv:1711.07971v3, 2018:7794-7803. [23] HUANG Zilong, WANG Xinggang, HUANG Lichao, et al. Ccnet:Criss-cross attention for semantic segmentation[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South):IEEE, 2019:603-612. [24] LI Xia, ZHONG Zhisheng, WU Jianlong, et al. Expectation-maximization attention networks for semantic segmentation[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South):IEEE, 2019:9167-9176. [25] FU Jun, LIU Jing, TIAN Haijie, et al. Dual attention network for scene segmentation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA:IEEE, 2019:3146-3154. [26] MOU Lichao, HUA Yuansheng, ZHU Xiaoxiang. A relation-augmented fully convolutional network for semantic segmentation in aerial scenes[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision And Pattern Recognition. Long Beach, CA:IEEE, 2019:12416-12425. [27] TONG Xinyi, XIA Guisong, LU Qikai, et al. Learning transferable deep models for land-use classification with high-resolution remote sensing images[J]. arXiv preprint arXiv:1807.05713, 2018. [28] GONZALEZ R C, WOODS R E, EDDINS S L. Digital image processing using MATLAB[M]. Upper Saddle River:Prentice Hall, 2004. [29] BERMAN M, TRIKI A R, BLASCHKO M B. The lovász-softmax loss:a tractable surrogate for the optimization of the intersection-over-union measure in neural networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018:4413-4421. [30] LIN Wenjie, LI Yu, ZHAO Quanhua. High-resolution remote sensing image segmentation using mining spanning tree tessellation and RHMRF-FCM algorithm[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):52-63.DOI:10.11947/j.JGGS.2020.0106. |