[1] ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of Geophysical Research, 1997, 102(B3):5005-5017. [2] KOUBA J, HÉROUX P. Precise point positioning using IGS orbit and clock products[J]. GPS Solutions, 2001, 5(2):12-28. DOI:10.1007/PL00012883. [3] 张小红, 李星星, 李盼. GNSS精密单点定位技术及应用进展[J]. 测绘学报, 2017, 46(10):1399-1407. DOI:10.11947/j.AGCS.2017.20170327. ZHANG Xiaohong, LI Xingxing, LI Pan. Review of GNSS PPP and its application[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1399-1407. DOI:10.11947/j.AGCS.2017.20170327. [4] 谭述森. 北斗卫星导航系统的发展与思考[J]. 宇航学报, 2008, 29(2):391-396. TAN Shusen. Development and thought of compass navigation satellite system[J]. Journal of Astronautics, 2008, 29(2):391-396. [5] 杨元喜. 北斗卫星导航系统的进展、贡献与挑战[J]. 测绘学报, 2010, 39(1):1-6. YANG Yuanxi. Progress, contribution and challenges of Compass/BeiDou satellite navigation system[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1):1-6. [6] YANG Yuanxi, GAO Weiguang, GUO Shuren, et al. Introduction to BeiDou-3 navigation satellite system[J]. Navigation, 2019, 66(1):7-18. DOI:10.1002/navi.291. [7] KE Mingxing, LV Jing, CHANG Jiang, et al. Integrating GPS and LEO to accelerate convergence time of precise point positioning[C]//Proceedings of 2015 International Conference on Wireless Communications & Signal. Nanjing, China:IEEE, 2015:1-5. [8] GE Haibo, LI Bofeng, GE Maorong, et al. Initial assessment of precise point positioning with LEO enhanced global navigation satellite systems (LeGNSS)[J]. Remote Sensing, 2018, 10(7):984. [9] LI Xingxing, MA Fujian, LI Xin, et al. LEO constellation-augmented multi-GNSS for rapid PPP convergence[J]. Journal of Geodesy, 2019, 93(5):749-764. DOI:10.1007/s00190-018-1195-2. [10] 张小红, 马福建. 低轨导航增强GNSS发展综述[J]. 测绘学报, 2019, 48(9):1073-1087. DOI:10.11947/j.AGCS.2019.20190176. ZHANG Xiaohong, MA Fujian. Review of the development of LEO navigation-augmented GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9):1073-1087. DOI:10.11947/j.AGCS.2019.20190176. [11] ZHANG Xiaohong, LI Xingxing, GUO Fei. Satellite clock estimation at 1 Hz for realtime kinematic PPP applications[J]. GPS Solutions, 2010, 15(4):315-324. [12] LIU Teng, ZHANG Baocheng, YUAN Yunbin, et al. An efficient undifferenced method for estimating multi-GNSS high-rate clock corrections with data streams in real time[J]. Journal of Geodesy, 2019, 93(9):1435-1456. [13] DAI Zhiqiang, DAI Xiaolei, ZHAO Qile, et al. Improving real-time clock estimation with undifferenced ambiguity fixing[J]. GPS Solutions, 2019, 23(2):44. [14] LIU Zhiqiang, YUE Dongjie, HUANG Zhangyu, et al. Performance of real-time undifferenced precise positioning assisted by remote IGS multi-GNSS stations[J]. GPS Solutions, 2020, 24(2):58. [15] EL-MOWAFY A, DEO M, KUBO N. Maintaining real-time precise point positioning during outages of orbit and clock corrections[J]. GPS Solutions, 2017, 21(3):937-947. [16] NIE Zhixi, GAO Yang, WANG Zhenjie, et al. An approach to GPS clock prediction for real-time PPP during outages of RTS stream[J]. GPS Solutions, 2018, 22(1):14. DOI:10.1007/s10291-017-0681-y. [17] COLLINS P, BISNATH S, LAHAYE F, et al. Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing[J]. Navigation, 2010, 57(2):123-135. [18] LAURICHESSE D, MERCIER F, BERTHIAS JP, et al. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination[J]. Navigation, 2009, 56(2):135-149. [19] GE M, GENDT G, ROTHACHER M, et al. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations[J]. Journal of Geodesy, 2008, 82(7):389-399. [20] LI Pan, ZHANG Xiaohong, REN Xiaodong, et al. Generating GPS satellite fractional cycle bias for ambiguity-fixed precise point positioning[J]. GPS Solutions, 2016, 20(4):771-782. [21] HU Jiahuan, ZHANG Xiaohong, LI Pan, et al. Multi-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan University[J]. GPS Solutions, 2020, 24(1):15. DOI:10.1007/s10291-019-0929-9. [22] LOYER S, PEROSANZ F, MERCIER F, et al. Zero-difference GPS ambiguity resolution at CNES-CLS IGS analysis center[J]. Journal of Geodesy, 2012, 86(11):991-1003. [23] GENG Jianghui, CHEN Xingyu, PAN Yuanxin, et al. PRIDE PPP-AR:an open-source software for GPS PPP ambiguity resolution[J]. GPS Solutions, 2019, 23(4):91. DOI:10.1007/s10291-019-0888-1. [24] LIU Yanyan, SONG Weiwei, LOU Yidong, et al. GLONASS phase bias estimation and its PPP ambiguity resolution using homogeneous receivers[J]. GPS Solutions, 2017, 21(2):427-437. DOI:10.1007/s10291-016-0529-x. [25] YI Wenting, SONG Weiwei, LOU Yidong, et al. Improved method to estimate undifferenced satellite fractional cycle biases using network observations to support PPP ambiguity resolution[J]. GPS Solutions, 2017, 21(3):1369-1378. DOI:10.1007/s10291-017-0616-7. [26] KAMALI O, COCARD M, SANTERRE R. A sequential network approach for estimating GPS satellite phase biases at the PPP-AR producer-side[J]. GPS Solutions, 2018, 22(3):59. [27] XIAO Guorui, LI Pan, SUI Lifen, et al. Estimating and assessing Galileo satellite fractional cycle bias for PPP ambiguity resolution[J]. GPS Solutions, 2019, 23(1):3. [28] XIAO Guorui, SUI Lifen, HECK B, et al. Estimating satellite phase fractional cycle biases based on Kalman filter[J]. GPS Solutions, 2018, 22(3):82. [29] YAO Yibin, PENG Wenjie, XU Chaoqian, et al. The realization and evaluation of mixed GPS/BDS PPP ambiguity resolution[J]. Journal of Geodesy, 2019, 93(9):1283-1295. [30] WANG Jin, HUANG Guanwen, YANG Yuanxi, et al. FCB estimation with three different PPP models:equivalence analysis and experiment tests[J]. GPS Solutions, 2019, 23(4):93. [31] LI Pan, ZHANG Xiaohong, GUO Fei. Ambiguity resolved precise point positioning with GPS and BeiDou[J]. Journal of Geodesy, 2017, 91(1):25-40. DOI:10.1007/s00190-016-0935-4. [32] LIU Yanyan, YE Shirong, SONG Weiwei, et al. Integrating GPS and BDS to shorten the initialization time for ambiguity-fixed PPP[J]. GPS Solutions, 2017, 21(2):333-343. [33] LIU Yanyan, LOU Yidong, YE Shirong, et al. Assessment of PPP integer ambiguity resolution using GPS, GLONASS and BeiDou (IGSO, MEO) constellations[J]. GPS Solutions, 2017, 21(4):1647-1659. [34] LIU Teng, YUAN Yunbin, ZHANG Baocheng, et al. Multi-GNSS precise point positioning (MGPPP) using raw observations[J]. Journal of Geodesy, 2017, 91(3):253-268. DOI:10.1007/s00190-016-0960-3. [35] LI Xingxing, LI Xin, YUAN Yongqiang, et al. Multi-GNSS phase delay estimation and PPP ambiguity resolution:GPS, BDS, GLONASS, Galileo[J]. Journal of Geodesy, 2018, 92(6):579-608. DOI:10.1007/s00190-017-1081-3. [36] MONTENBRUCK O, HUGENTOBLER U, DACH R, et al. Apparent clock variations of the Block ⅡF-1(SVN62) GPS satellite[J]. GPS Solutions, 2012, 16(3):303-313. DOI:10.1007/s10291-011-0232-x. [37] PAN Lin, ZHANG Xiaohong, GUO Fei, et al. GPS inter-frequency clock bias estimation for both uncombined and ionospheric-free combined triple-frequency precise point positioning[J]. Journal of Geodesy, 2019, 93(4):473-487. [38] PAN Lin, ZHANG Xiaohong, LI Xingxing, et al. GPS inter-frequency clock bias modeling and prediction for real-time precise point positioning[J]. GPS Solutions, 2018, 22(3):76. [39] LI Pan, JIANG Xinyuan, ZHANG Xiaohong, et al. GPS+Galileo+BeiDou precise point positioning with triple-frequency ambiguity resolution[J]. GPS Solutions, 2020, 24(3):78. [40] GUO Fei, ZHANG Xiaohong, WANG Jinling, et al. Modeling and assessment of triple-frequency BDS precise point positioning[J]. Journal of Geodesy, 2016, 90(11):1223-1235. [41] ELSOBEIEY M. Precise point positioning using triple-Frequency GPS measurements[J]. The Journal of Navigation, 2015, 68(3):480-492. [42] SU Ke, JIN Shuanggen, JIAO Guoqiang. Assessment of multi-frequency global navigation satellite system precise point positioning models using GPS, BeiDou, GLONASS, Galileo and QZSS[J]. Measurement Science and Technology, 2020, 31(6):064008. [43] LI Pan, ZHANG Xiaohong, GE Maorong, et al. Three-frequency BDS precise point positioning ambiguity resolution based on raw observables[J]. Journal of Geodesy, 2018, 92(12):1357-1369. [44] LI Xingxing, LI Xin, LIU Gege, et al. Triple-frequency PPP ambiguity resolution with multi-constellation GNSS:BDS and Galileo[J]. Journal of Geodesy, 2019, 93(8):1105-1122. [45] GENG Jianghui, GUO Jiang, MENG Xiaolin, et al. Speeding up PPP ambiguity resolution using triple-frequency GPS/BeiDou/Galileo/QZSS data[J]. Journal of Geodesy, 2020, 94(1):6. [46] XIN Shaoming, GENG Jianghui, GUO Jiang, et al. On the choice of the third-frequency galileo signals in accelerating PPP ambiguity resolution in case of receiver antenna phase center errors[J]. Remote Sensing, 2020, 12(8):1315. [47] LI Xingxing, LIU Gege, LI Xin, et al. Galileo PPP rapid ambiguity resolution with five-frequency observations[J]. GPS Solutions, 2019, 24(1):24. [48] CAI Changsheng, GAO Yang. Modeling and assessment of combined GPS/GLONASS precise point positioning[J]. GPS Solutions, 2013, 17(2):223-236. DOI:10.1007/s10291-012-0273-9. [49] LI Pan, ZHANG Xiaohong. Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning[J]. GPS Solutions, 2014, 18(3):461-471. [50] LI Xingxing, GE Maorong, DAI Xiaolei, et al. Accuracy and reliability of multi-GNSS real-time precise positioning:GPS, GLONASS, BeiDou, and Galileo[J]. Journal of Geodesy, 2015, 89(6):607-635. [51] LI Xingxing, ZHANG Xiaohong, REN Xiaodong, et al. Precise positioning with current multi-constellation Global Navigation Satellite Systems:GPS, GLONASS, Galileo and BeiDou[J]. Scientific Reports, 2015, 5(1):8328. [52] WVBBENA G, SCHMITZ M, BAGGE A. PPP-RTK:Precise point positioning Using State-space representation in RTK Networks[C]//Proceedings of the 18th International Technical Meeting (ION GNSS 2005). Long Beach, CA:Long Beach Convention Center, 2005:13-16. [53] 李星星. GNSS精密单点定位及非差模糊度快速确定方法研究[D]. 武汉:武汉大学, 2013. LI Xingxing. Rapid ambiguity resolution in GNSS precise point positioning[D]. Wuhan:Wuhan University, 2013. [54] WILGAN K, HADAS T, HORDYNIEC P, et al. Real-time precise point positioning augmented with high-resolution numerical weather prediction model[J]. GPS Solutions, 2017, 21(3):1341-1353. [55] XIANG Yan, GAO Yang, LI Yihe. Reducing convergence time of precise point positioning with ionospheric constraints and receiver differential code bias modeling[J]. Journal of Geodesy, 2020, 94(1):8. [56] GENG Jianghui, SHI Chuang. Rapid initialization of real-time PPP by resolving undifferenced GPS and GLONASS ambiguities simultaneously[J]. Journal of Geodesy, 2017, 91(4):361-374. DOI:10.1007/s00190-016-0969-7. [57] GENG Jianghui, LI Xiaotao, ZHAO Qile, et al. Inter-system PPP ambiguity resolution between GPS and BeiDou for rapid initialization[J]. Journal of Geodesy, 2019, 93(3):383-398. [58] BANVILLE S, LANGLEY R B. Improving real-time kinematic PPP with instantaneous cycle-slip correction[C]//Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009). Savannah, GA:Savannah International Convention Center, 2009:2470-2478. [59] GENG Jianghui, MENG Xiaolin, DODSON AH, et al. Rapid re-convergences to ambiguity-fixed solutions in precise point positioning[J]. Journal of Geodesy, 2010, 84(12):705-714. DOI:10.1007/s00190-010-0404-4. [60] ZHANG Xiaohong, LI Xingxing. Instantaneous re-initialization in real-time kinematic PPP with cycle slips fixing[J]. GPS Solutions, 2012, 16(3):315-327. DOI:10.1007/s10291-011-0233-9. [61] LI Pan, JIANG Xinyuan, ZHANG Xiaohong, et al. Kalman-filter-based undifferenced cycle slip estimation in real-time precise point positioning[J]. GPS Solutions, 2019, 23(4):99. DOI:10.1007/s10291-019-0894-3. [62] ZHANG Xiaohong, ZHU Feng, ZHANG Yuxi, et al. The improvement in integer ambiguity resolution with INS aiding for kinematic precise point positioning[J]. Journal of Geodesy, 2019, 93(7):993-1010. DOI:10.1007/s00190-018-1222-3. [63] LI Xingxing, ZHANG Xiaohong, GE Maorong. Regional reference network augmented precise point positioning for instantaneous ambiguity resolution[J]. Journal of Geodesy, 2011, 85(3):151-158. DOI:10.1007/s00190-010-0424-0. [64] DE OLIVEIRA PS JR, MOREL L, FUND F, et al. Modeling tropospheric wet delays with dense and sparse network configurations for PPP-RTK[J]. GPS Solutions, 2017, 21(1):237-250. [65] ZHANG Baocheng, CHEN Yongchang, YUAN Yunbin. PPP-RTK based on undifferenced and uncombined observations:theoretical and practical aspects[J]. Journal of Geodesy, 2018, 93(7):1011-1024. [66] LI Linyang, LU Zhiping, CHEN Zhengsheng, et al. Parallel computation of regional CORS network corrections based on ionospheric-free PPP[J]. GPS Solutions, 2019, 23(3):70. DOI:10.1007/s10291-019-0864-9. [67] LI Zhao, CHEN Wu, RUAN Rengui, et al. Evaluation of PPP-RTK based on BDS-3/BDS-2/GPS observations:a case study in Europe[J]. GPS Solutions, 2020, 24(2):38. DOI:10.1007/s10291-019-0948-6. [68] NADARAJAH N, KHODABANDEH A, WANG Kan, et al. Multi-GNSS PPP-RTK:from large-to small-scale networks[J]. Sensors, 2018, 18(4):1078. [69] OLIVARES-PULIDO G, TERKILDSEN M, ARSOV K, et al. A 4D tomographic ionospheric model to support PPP-RTK[J]. Journal of Geodesy, 2019, 93(9):1673-1683. [70] ASARI K, KUBO Y, SUGIMOTO S. Design of GNSS PPP-RTK assistance system and its algorithms for 5G mobile networks[J]. Transactions of the Institute of Systems, Control and Information Engineers, 2020, 33(1):31-37. DOI:10.5687/iscie.33.31. |