测绘学报 ›› 2021, Vol. 50 ›› Issue (11): 1512-1521.doi: 10.11947/j.AGCS.2021.20210250

• 智能驾驶环境感知 • 上一篇    下一篇

双目视觉与惯导融合的移动机器人定位方法

许智宾1, 李宏伟2, 张斌2, 肖志远3, 邓晨1   

  1. 1. 郑州大学信息工程学院, 河南 郑州 450052;
    2. 郑州大学地球科学与技术学院, 河南 郑州 450052;
    3. 郑州大学水利科学与工程学院, 河南 郑州 450001
  • 收稿日期:2021-05-11 修回日期:2021-09-27 发布日期:2021-12-07
  • 通讯作者: 李宏伟 E-mail:laob_811@sina.com
  • 作者简介:许智宾(1996—),男,硕士生,研究方向为视觉SLAM。
  • 基金资助:
    中国工程科技发展战略河南研究院战略咨询研究项目(2020HENZT07)

Localization method of mobile robot based on binocular vision and inertial navigation

XU Zhibin1, LI Hongwei2, ZHANG Bin2, XIAO Zhiyuan3, DENG Chen1   

  1. 1. School of Information Engineering, Zhengzhou University, Zhengzhou 450052, China;
    2. School of Geoscience and Technology, Zhengzhou University, Zhengzhou 450052, China;
    3. School of Water Conservancy Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
  • Received:2021-05-11 Revised:2021-09-27 Published:2021-12-07
  • Supported by:
    Strategic Consulting Research Project of Henan Research Institute of China Engineering Science and Technology Development Strategy (No. 2020HENZT07)

摘要: 为了提高移动机器人的定位精度,提出一种双目视觉与惯导融合的视觉SLAM算法。在视觉SLAM前端部分,为了保持直接法计算速度快及特征法精度高的特点,提出一种融合直接法和特征法的半直接法双目视觉里程计。在后端优化阶段,将视觉数据与IMU数据相互融合,在滑动窗口中以非线性优化的方式构建误差函数,优化位姿计算精度。在EuRoc数据集中对本文提出的算法进行试验验证。结果表明,与开源的视觉惯导融合的SLAM系统OKVIS、ROVIO和VINS-Mono相比,本文系统在Machine Hall与Vicon Room两个场景中的定位精度均得到了明显的提升,同时可以保持较高的运行效率。

关键词: 同时定位与地图构建, 视觉惯导融合, 双目视觉, 特征法, 直接法

Abstract: To improve the positioning accuracy of mobile robot, a visual SLAM algorithm based on binocular vision and inertial navigation is presented. In the front part of visual SLAM, a semi-direct binocular visual odometer combining direct method with characteristic method is presented to maintain the fast calculation speed and high accuracy of direct method. In the back-end optimization stage, the visual data and IMU data are fused together, and error functions are constructed in a sliding window in a non-linear optimization way to optimize the accuracy of pose calculation. The algorithm proposed in this paper is validated in EuRoc dataset. The results show that the positioning accuracy of the SLAM system OKVIS, ROVIO and VINS-Mono is significantly improved in both Machine Hall and Vicon Room scenarios, while maintaining high operational efficiency, compared with the open source visual inertial navigation fusion SLAM system OKVIS, ROVIO and VINS-Mono.

Key words: SLAM, visual inertial navigation fusion, binocular vision, feature method, direct method

中图分类号: