测绘学报 ›› 2021, Vol. 50 ›› Issue (2): 189-202.doi: 10.11947/j.AGCS.2021.20200048

• 摄影测量学与遥感 • 上一篇    下一篇

异源遥感影像特征匹配的深度学习算法

蓝朝桢1, 卢万杰1, 于君明2, 徐青1   

  1. 1. 信息工程大学地理空间信息学院, 河南 郑州 450001;
    2. 中国电子科技集团公司第二十七研究所, 河南 郑州 450047
  • 收稿日期:2020-02-17 修回日期:2020-12-14 发布日期:2021-03-03
  • 通讯作者: 徐青 E-mail:13937169139@139.com
  • 作者简介:蓝朝桢(1979-),男,博士,副教授,研究方向为摄影测量与遥感。E-mail:lan_cz@163.com
  • 基金资助:
    国家重点研发计划(2017YFC1200305);国家自然科学基金(41876105;41371436)

Deep learning algorithm for feature matching of cross modality remote sensing images

LAN Chaozhen1, LU Wanjie1, YU Junming2, XU Qing1   

  1. 1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China;
    2. China Electronic Technology Group Corporation 27 th Research Institute, Zhengzhou 450047, China
  • Received:2020-02-17 Revised:2020-12-14 Published:2021-03-03
  • Supported by:
    The National Key Research and Development Project(No. 2017YFC1200305);The National Natural Science Foundation of China (Nos. 41876105;41371436)

摘要: 针对异源遥感影像的成像模式、时相、分辨率等不同导致匹配困难的问题,提出了一种基于深度学习特征的匹配方法CMM-Net。首先,利用卷积神经网络提取异源遥感影像的高维特征图,根据同时满足通道最大和局部最大两种条件选取关键点,并在特征图上提取相应位置的512维描述符。在匹配阶段,完成快速最近邻搜索特征匹配后,为解决误匹配点多的问题,提出了动态自适应欧氏距离阈值和RANSAC共同约束的提纯算法,保证误匹配有效剔除的同时,最大限度保留正确匹配点。利用多组异源遥感影像对算法进行了测试,并与多种异源影像匹配算法进行了比较,结果表明本文算法能够提取出异源影像的尺度不变相似特征,具有较强的适应性和稳健性。

关键词: 深度学习, 影像匹配, 异源影像, 卷积神经网络, 卫星影像

Abstract: Focusing on the problem of difficulty in matching due to the differences in imaging modality, time phases, and resolutions of cross modality remote sensing images, a new deep learning feature matching method named CMM-Net is proposed. First, a convolutional neural network is used to extract high-dimensional feature maps of the cross modality remote sensing images. The key points are selected according to the conditions that both the channel maximum and local maximum are met, and the 512-dimensional descriptors in corresponding location are extracted on the feature map to complete the feature extraction. In the matching stage, after completing the fast-nearest neighbor searching, in order to solve the problem of lots of mismatched points, a purification algorithm with dynamic adaptive Euclidean distance and RANSAC constraints is proposed to ensure that the mismatches are effectively eliminated while retaining the correct matches. The algorithm was tested using multiple sets of cross modality remote sensing images and compared with other algorithms. The results show that the proposed algorithm has the ability to extract similar scale invariant features in cross modality images, and has strong adaptability and robustness.

Key words: deep learning, image matching, cross modality image, convolution neural network, satellite image

中图分类号: