[1] ZENG Tian, SUI Lifen, JIA Xiaolin, et al. Results and analyses of BDS precise orbit determination with the enhancement of Fengyun-3C[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3):68-78. [2] VAN DEN IJSSEL J, ENCARNAÇÃO J, DOORNBOS E, et al. Precise science orbits for the swarm satellite constellation[J]. Advances in Space Research, 2015, 56(6):1042-1055. [3] TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the earth system[J]. Science, 2004, 305(5683):503-505. [4] KRIEGER G, MOREIRA A, FIEDLER H, et al. TanDEM-X:a satellite formation for high-resolution SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11):3317-3341. [5] JÄGGI A, HUGENTOBLER U, BOCK H, et al. Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data[J]. Advances in Space Research, 2007, 39(10):1612-1619. [6] HACKEL S, MONTENBRUCK O, STEIGENBERGER P, et al. Model improvements and validation of TerraSAR-X precise orbit determination[J]. Journal of Geodesy, 2017, 91(5):547-562. [7] ALLENDE-ALBA G, MONTENBRUCK O, JÄGGI A, et al. Reduced-dynamic and kinematic baseline determination for the Swarm mission[J]. GPS Solutions, 2017, 21(3):1275-1284. [8] KROES R, MONTENBRUCK O, BERTIGER W, et al. Precise GRACE baseline determination using GPS[J]. GPS Solutions, 2005, 9(1):21-31. [9] BERTIGER W, DESAI S D, HAINES B, et al. Single receiver phase ambiguity resolution with GPS data[J]. Journal of Geodesy, 2010, 84(5):327-337. [10] ALLENDE-ALBA G, MONTENBRUCK O, HACKEL S, et al. Relative positioning of formation-flying spacecraft using single-receiver GPS carrier phase ambiguity fixing[J]. GPS Solutions, 2018, 22(3):68. [11] LAURICHESSE D, MERCIER F, BERTHIAS J P, et al. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination[J]. Navigation, 2009, 56(2):135-149. [12] GE M, GENDT G, ROTHACHER M, et al. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations[J]. Journal of Geodesy, 2008, 82(7):389-399. [13] COLLINS P, BISNATH S, LAHAYE F, et al. Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing[J]. Navigation, 2010, 57(2):123-135. [14] SHI Junbo, GAO Yang. A comparison of three PPP integer ambiguity resolution methods[J]. GPS Solutions, 2014, 18(4):519-528. [15] 刘帅, 孙付平, 郝万亮, 等. 整数相位钟法精密单点定位模糊度固定模型及效果分析[J]. 测绘学报, 2014, 43(12):1230-1237. DOI:10.13485/j.cnki.11-2089.2014.0178. LIU Shuai, SUN Fuping, HAO Wanliang, et al. Modeling and effects analysis of PPP ambiguity fixing based on integer phase clock method[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12):1230-1237. DOI:10.13485/j.cnki.11-2089.2014.0178. [16] LOYER S, PEROSANZ F, MERCIER F, et al. Zero-difference GPS ambiguity resolution at CNES-CLS IGS analysis center[J]. Journal of Geodesy, 2012, 86(11):991-1003. [17] MONTENBRUCK O, HACKEL S, JÄGGI A. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations[J]. Journal of Geodesy, 2018, 92(7):711-726. [18] MONTENBRUCK O, HACKEL S, VAN DEN IJSSEL J, et al. Reduced dynamic and kinematic precise orbit determination for the Swarm mission from 4 years of GPS tracking[J]. GPS Solutions, 2018, 22(3):79. [19] BANVILLE S, GENG Jianghui, LOYER S, et al. On the interoperability of IGS products for precise point positioning with ambiguity resolution[J]. Journal of Geodesy, 2020, 94(1):10. [20] GENG Jianghui, CHEN Xingyu. Phase bias product and open-source software for undifferenced ambiguity resolution at Wuhan University[C]//Proceedings of 2018 IGS Workshop. Wuhan, China:Wuhan University, 2018. [21] SCHAER S, VILLIGER A, ARNOLD D, et al. New ambiguity-fixed IGS clock analysis products at CODE[C]//Proceedings of 2018 IGS Workshop. Wuhan, China:Wuhan University, 2018. [22] ARNOLD D, SCHAER S, VILLIGER A, et al. Undifference ambiguity resolution for GPS-based precise orbit determination of low earth orbiters using the new CODE clock and phase bias products[C]//Proceedings of 2018 IGS Workshop. Wuhan, China:Wuhan University, 2018. [23] GUO Xiang, GENG Jianghui, CHEN Xingyu, et al. Enhanced orbit determination for formation-flying satellites through integrated single- and double-difference GPS ambiguity resolution[J]. GPS Solutions, 2020, 24(1):14. [24] LI Xingxing, WU Jiaqi, ZHANG Keke, et al. Real-time kinematic precise orbit determination for LEO satellites using zero-differenced ambiguity resolution[J]. Remote Sensing, 2019, 11(23):2815. [25] JÄGGI A, BOCK H, MEYER U, et al. GOCE:assessment of GPS-only gravity field determination[J]. Journal of Geodesy, 2015, 89(1):33-48. [26] ZHANG Keke, LI Xingxing, XIONG Chao, et al. The influence of geomagnetic storm of 7-8 September 2017 on the Swarm precise orbit determination[J]. Journal of Geophysical Research:Space Physics, 2019, 124(8):6971-6984. [27] 张强. 采用GPS与北斗的低轨卫星及其编队精密定轨关键技术研究[D]. 武汉:武汉大学, 2018. ZHANG Qiang. Research on the key technologies of precise orbit determination for low earth satellites and their formation using GPS and BDS[D]. Wuhan:Wuhan University, 2018. [28] JU Bing, GU Defeng, HERRING T A, et al. Precise orbit and baseline determination for maneuvering low earth orbiters[J]. GPS Solutions, 2017, 21(1):53-64. [29] GU Defeng, JU Bing, LIU Junhong, et al. Enhanced GPS-based GRACE baseline determination by using a new strategy for ambiguity resolution and relative phase center variation corrections[J]. Acta Astronautica, 2017, 138:176-184. [30] JÄGGI A, DACH R, MONTENBRUCK O, et al. Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination[J]. Journal of Geodesy, 2009, 83(12):1145-1162. [31] GU Defeng, LAI Yuwang, LIU Junlong, et al. Spaceborne GPS receiver antenna phase center offset and variation estimation for the Shiyan 3 satellite[J]. Chinese Journal of Aeronautics, 2016, 29(5):1335-1344. [32] WEN H Y, KRUIZINGA G, PAIK M, et al. GRACE-FO level-1 data product user handbook[R]. Pasadena:Jet Propulsion Laboratory, 2019. [33] REBISCHUNG P, SCHMID R. IGS14/igs14.atx:a new framework for the IGS products[C]//Proceedings of 2016 AGU Fall Meeting. San Francisco, CA:AUG, 2016. [34] WU J T, WU S C, HAJJ G A, et al. Effects of antenna orientation on GPS carrier phase[J]. Manuscripta Geodaetica, 1993, 18:91-98. [35] RIES J, BETTADPUR S, EANES R, et al. The development and evaluation of the global gravity model GGM05[R]. Austin, Texas:Center for Space Research, The University of Texas at Austin, 2016. [36] LYARD F, LEFEVRE F, LETELLIER T, et al. Modelling the global ocean tides:modern insights from FES2004[J]. Ocean Dynamics, 2006, 56(5):394-415. [37] MCCARTHY D, PETIT G. IERS conventions (2003)[R]. Frankfurt am Main, Germany:Bundesamt für Kartographie und Geodäsie, 2004. [38] STANDISH E M. JPL planetary and lunar ephemerides[R]. Pasadena:Jet Propulsion Laboratory, 1998. [39] JACCHIA L G. New static models of the thermosphere and exosphere with empirical temperature profiles[R]. Cambridge:[s.n.], 1970. [40] PEARLMAN M R, DEGNAN J J, BOSWORTH J M. The international laser ranging service[J]. Advances in Space Research, 2002, 30(2):135-143. |