[1] 杨元喜, 张丽萍. 中国大地测量数据处理60年重要进展第一部分: 函数模型和随机模型进展[J]. 地理空间信息, 2009, 7(6): 1-5. YANG Yuanxi, ZHANG Liping. Progress of geodetic data processing for 60 years in china part 1: progress of functional and stochastic model[J]. Geospatial Information, 2009, 7(6): 1-5. [2] 杨元喜, 张丽萍. 中国大地测量数据处理60年重要进展第二部分: 大地测量参数估计理论与方法的主要进展[J]. 地理空间信息, 2010, 8(1): 1-6. YANG Yuanxi, ZHANG Liping. Progress of geodetic data processing for 60 years in china part 2: progress of parameter estimation theory and methodology[J]. Geospatial Information, 2010, 8(1): 1-6. [3] 彭军还. 非线性M估计研究及其应用[D]. 武汉: 武汉大学, 2003. PENG Junhuan. Research on non-linear M-estimates and its application[D]. Wuhan: Wuhan University, 2003. [4] 沈云中. 动力学法的卫星重力反演算法特点与改进设想[J]. 测绘学报, 2017, 46(10): 1308-1315. DOI: 10.11947/j.AGCS.2017.20170380. SHEN Yunzhong. Algorithm characteristics of dynamic approach-based satellite gravimetry and its improvement proposals[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1308-1315. DOI: 10.11947/j.AGCS.2017.20170380. [5] 彭军还, 李淑慧, 师芸, 等. 不等式约束M估计的均方误差矩阵和解的改善条件[J]. 测绘学报, 2010, 39(2): 129-134. PENG Junhuan, LI Shuhui, SHI Yun, et al. The mean squares error matrix of inequality constrained M-estimate and the conditions for improving solutions[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(2): 129-134. [6] 李斐, 郝卫峰, 王文睿, 等. 非线性病态问题解算的扰动分析[J]. 测绘学报, 2011, 40(1): 5-9. LI Fei, HAO Weifeng, WANG Wenrui, et al. The perturbation analysis of nonlinear ill-conditioned solution[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1): 5-9. [7] 薛树强, 杨元喜, 党亚民. 测距定位方程非线性平差的封闭牛顿迭代公式[J]. 测绘学报, 2014, 43(8): 771-777. XUE Shuqiang, YANG Yuanxi, DANG Yamin. A closed-form of Newton iterative formula for nonlinear adjustment of distance equations[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8): 771-777. [8] ZHU Jianjun, XIE Qinghua, ZUO Tingying, et al. Complex least squares adjustment to improve tree height inversion problem in PolInSAR[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 1-8. DOI: 10.11947/j.JGGS.2019.0101. [9] 曲国庆, 孙振, 苏晓庆, 等. 非线性参数估计的自适应松弛正则化算法[J]. 武汉大学学报(信息科学版), 2019, 44(10): 1491-1497. QU Guoqing, SUN Zhen, SU Xiaoqing, et al. Adaptive relaxation regularization algorithm for nonlinear parameter estimation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1491-1497. [10] 薛树强. 大地测量观测优化理论与方法研究[D]. 西安: 长安大学, 2018. XUE Shuqiang. Research on geodetic observation optimization theory and methods[D]. Xi’an: Chang’an University, 2018. [11] 牟忠凯, 隋立芬, 张清华, 等. 顾及线性化模型误差补偿的卡尔曼滤波算法[J]. 武汉大学学报(信息科学版), 2011, 36(9): 1073-1076. MOU Zhongkai, SUI Lifen, ZHANG Qinghua, et al. An improved EKF algorithm considering model errors of linearization[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1073-1076. [12] NOCEDAL J, WRIGHT S J. Numerical optimization[M]. New York: Springer Press, 2006. [13] 王新洲. 非线性模型参数估计理论与应用[M]. 武汉: 武汉大学出版社, 2002. WANG Xinzhou. Theories and applications of nonlinear model parameter estimation[M]. Wuhan: Wuhan University Press, 2002. [14] 曾小牛, 刘代志, 牛超, 等. 改进高斯-牛顿法的位场向下延拓[J]. 测绘学报, 2014, 43(1): 37-44. DOI: 10.13485/j.cnki.11-2089.2014.0006. ZENG Xiaoniu, LIU Daizhi, NIU Chao, et al. A modified Gauss-Newton method for downward continuation of potential field[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(1): 37-44. DOI: 10.13485/j.cnki.11-2089.2014.0006. [15] 马昌凤. 最优化方法及其MATLAB程序设计[M]. 北京: 科学出版社, 2010. MA Changfeng. Optimization method and the MATLAB programming[M]. Beijing: Science Press, 2010. [16] 冯万鹏, 李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J]. 地球物理学进展, 2010, 25(4): 1189-1196. FENG Wanpeng, LI Zhenhong. A novel hybrid PSO/simplex algorithm for determining earthquake source parameters using InSAR data[J]. Progress in Geophysics, 2010, 25(4): 1189-1196. [17] 万永革, 刘瑞丰, 李鸿吉. 用遗传算法反演京津唐张地区的三维地壳结构和震源位置[J]. 地震学报, 1997, 19(6): 623-633. WAN Yongge, LIU Ruifeng, LI Hongji. Inversion of 3D crustal structure and source location in Jing-Jin-Tang-Zhang area by genetic algorithm[J]. Acta Seismologica Sinica, 1997, 19(6): 623-633. [18] 徐培亮. 非线性函数的协方差传播公式[J]. 武汉测绘科技大学学报, 1986(2): 92-99. XU Peiliang. Variance-covariance propagation for a nonlinear function[J]. Journal of Wuhan University of Surveying and Mapping, 1986(2): 92-99. [19] XUE Jie, LEUNG Y, MA Jianghong. High-order Taylor series expansion methods for error propagation in geographic information systems[J]. Journal of Geographical Systems, 2015, 17(2): 187-206. [20] WANG Leyang, ZHAO Yingwen. Second-order approximation function method for precision estimation of total least squares[J]. Journal of Surveying Engineering, 2019, 145(1): 04018011. [21] ALKHATIB H, SCHUH W D. Integration of the Monte Carlo covariance estimation strategy into tailored solution procedures for large-scale least squares problems[J]. Journal of Geodesy, 2007, 81(1): 53-66. [22] SHEN Yunzhong, LI Bofeng, CHEN Yi. An iterative solution of weighted total least-squares adjustment[J]. Journal of Geodesy, 2011, 85(4): 229-238. [23] 王乐洋, 赵英文. 非线性平差精度评定的自适应蒙特卡罗法[J]. 武汉大学学报(信息科学版), 2019, 44(2): 206-213, 220. WANG Leyang, ZHAO Yingwen. Adaptive Monte Carlo method for precision estimation of nonlinear adjustment[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 206-213, 220. [24] WANG Leyang, YU Fengbin. Jackknife resample method for precision estimation of weighted total least squares[J]. Communications in Statistics-Simulation and Computa-tion, 2021,50(5): 1272-1289. DOI: 10.1080/03610918.2019.1580727. [25] WANG Leyang, DING Rui. Inversion and precision estimation of earthquake fault parameters based on scaled unscented transformation and hybrid PSO/Simplex algorithm with GPS measurement data[J]. Measurement, 2020, 153: 107422. [26] WANG Leyang, ZOU Chuanyi. Accuracy analysis and applications of the Sterling interpolation method for nonlinear function error propagation[J]. Measurement, 2019, 146: 55-64. [27] EFRON B. Bootstrap methods: another look at the jackknife[J]. The Annals of Statistics, 1979, 7(1): 1-26. [28] JOHNSON R W. An introduction to the Bootstrap[J]. Teaching Statistics, 2001, 23(2): 49-54. [29] CHEN Xiaohui. Gaussian and Bootstrap approximations for high-dimensional u-statistics and their applications[J]. The Annals of Statistics, 2018, 46(2): 642-678. [30] SAHINLER S, TOPUZ D. Bootstrap and Jackknife resampling algorithms for estimation of regression parameters[J]. Journal of Applied Quantitative Methods, 2007, 2(2): 188-199. [31] MARTÍNEZ-CAMBLOR P, CORRAL N. A general Bootstrap algorithm for hypothesis testing[J]. Journal of Statistical Planning and Inference, 2012, 142(2): 589-600. [32] KITAGAWA G, KONISHI S. Bias and variance reduction techniques for Bootstrap information criteria[J]. Annals of the Institute of Statistical Mathematics, 2010, 62(1): 209-234. [33] PAN L, POLITIS D N. Bootstrap prediction intervals for linear, nonlinear and nonparametric autoregressions[J]. Journal of Statistical Planning and Inference, 2016, 177: 1-27. [34] O’HAGAN A, MURPHY T B, SCRUCCA L, et al. Investigation of parameter uncertainty in clustering using a Gaussian mixture model via Jackknife, Bootstrap and weighted likelihood Bootstrap[J]. Computational Statistics, 2019, 34(4): 1779-1813. [35] 李桂苓, 李瑞华, 陶华学. 非线性最小二乘平差参数精度的评定[J]. 石油大学学报(自然科学版), 2001, 25(1): 102-106. LI Guiling, LI Ruihua, TAO Huaxue. Accuracy of parameters adjusted by variance-covariance propagation of nonlinear least squares for different types of observed values[J]. Journal of the University of Petroleum, China, 2001, 25(1): 102-106. [36] DICICCIO T J, ROMANO J P. A review of Bootstrap confidence intervals[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1989, 51(3): 470. [37] ANGRISANO A, MARATEA A, GAGLIONE S. A resampling strategy based on Bootstrap to reduce the effect of large blunders in GPS absolute positioning[J]. Journal of Geodesy, 2018, 92(1): 81-92. [38] EFRON B. Nonparametric standard errors and confidence intervals[J]. Canadian Journal of Statistics, 1981, 9(2): 139-158. [39] EFRON B, TIBSHIRANI R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy[J]. Statistical Science, 1986, 1(1): 54-75. [40] STINE R. An introduction to Bootstrap methods: examples and ideas[J]. Sociological Methods & Research, 1989, 18(2-3): 243-291. [41] LÉGER C, POLITIS D N, ROMANO O P. Bootstrap technology and applications[J]. Technometrics, 1992, 34(4): 378-398. [42] 崔希璋, 於宗俦, 陶本藻, 等. 广义测量平差(新版)[M]. 武汉: 武汉大学出版社, 2005. CUI Xizhang, YU Zongchou, TAO Benzao, et al. Generalized surveying adjustment (new edition)[M]. Wuhan: Wuhan University Publishing House, 2005. [43] MOGI K. Relations between the eruptions of various volcanoes and the deformations of the ground surface around them[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1958, 36: 99-134. [44] YAMAKAWA N. On the strain produced in a semi-infinite elastic solid by an interior source of stress[J]. Journal of the Seismological Society of Japan, 1955, 8: 84-98. [45] 王乐洋, 余航. 火山Mogi模型反演的总体最小二乘联合平差方法[J]. 武汉大学学报(信息科学版), 2018, 43(9): 1333-1341. WANG Leyang, YU Hang. Application of total least squares joint adjustment to volcano inversion of Mogi model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1333-1341. [46] GU Yongwei, GUI Qingming, ZHANG Xuan, et al. Iterative solution of regularization to ill-conditioned problems in geodesy and geophysics[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 59-65. DOI: 10.11947/j.JGGS.2019.0107. [47] SHEN Yunzhong, XU Peiliang, LI Bofeng. Bias-corrected regularized solution to inverse ill-posed models[J]. Journal of Geodesy, 2012, 86(8): 597-608. |