测绘学报 ›› 2022, Vol. 51 ›› Issue (3): 413-425.doi: 10.11947/j.AGCS.2022.20200203

• 摄影测量学与遥感 • 上一篇    下一篇

星载轻量化影像控制点数据制作方法

纪松, 张永生, 董杨, 范大昭   

  1. 信息工程大学地理空间信息学院, 河南 郑州 450001
  • 收稿日期:2020-05-27 修回日期:2022-01-06 发布日期:2022-03-30
  • 通讯作者: 张永生 E-mail:yszhang2001@vip.163.com
  • 作者简介:纪松(1983-),男,副教授,博士生导师,主要研究方向为航天摄影测量及遥感影像处理与分析。E-mail:jisong_chxy@163.com
  • 基金资助:
    国家自然科学基金(41971427);高分遥感测绘应用示范系统(二期)(42-Y30B04-9001-19/21);遥感与空间智能系统中原学者首席科学家工作室专项(2018007)

Spaceborne lightweight image control points generation method

JI Song, ZHANG Yongsheng, DONG Yang, FAN Dazhao   

  1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China
  • Received:2020-05-27 Revised:2022-01-06 Published:2022-03-30
  • Supported by:
    The National Natural Science Foundation of China (No. 41971427); The High Resolution Remote Sensing, Surveying and Mapping Application Demonstration System (Phase II) (No. 42-Y30B04-9001-19/21); The Chief Scientist Studio Program of Central Plain Scholar in Remote Sensing and Geospatial Intelligence System (No. 2018007)

摘要: 针对智能遥感卫星系统星上处理与端到端测绘应用的轻量化全球控制信息需求,本文提出了一种星载轻量化影像控制点数据制作方法。首先,在稀少/无地面控制数据条件下,通过国产高分辨率立体测绘卫星影像的区域网平差处理,生成全球影像控制点;其次,通过将影像控制点的局部影像描述至特征向量,设计星载影像控制点的轻量化表示模式,分析其存储性能和星上匹配应用策略;然后,采用哈希映射学习得到的哈希函数,将影像控制点特征向量转换至哈希码,实现星载影像控制点的深度轻量化处理;最后,采用多类型卫星影像数据,进行影像控制点提取、特征向量描述、深度轻量化处理以及匹配性能分析试验,验证了轻量化影像控制点星上匹配与应用可行性,得到了全球影像控制点轻量化处理能力分析结论。

关键词: 智能遥感卫星系统, 影像控制点, 特征向量, 哈希算法, 轻量化处理

Abstract: In order to facilitate on-orbit processing and end-to-end mapping application of intelligent remote sensing satellite system, lightweight and on-orbit global control information has to be provided and effectively used. In this paper, a spaceborne lightweight image control points generation method is presented. Firstly, under the condition of sparse or no ground control points, global image control points are generated through the bundle adjustment of domestic high-resolution stereo mapping satellite images. Then, by describing the local image of the image control point to the feature vector, an on-board lightweight representation mode of image control points is designed, and its storage performance and on-board matching application strategies are analyzed. Finally, the Hash function obtained by hash learning is used to convert the feature vector of image control points into hash code, which can be furtherly applied to generate deep lightweight spaceborne image control points. Experiments of image control point extraction, eigenvector description, lightweight processing and matching performance analysis are completed on multi-type satellite image data in this paper. The on-orbit matching and application feasibility of lightweight image control point is verified, and abilities of lightweight global image control point are concluded.

Key words: intelligent remote sensing satellite system, image control point, eigenvector, Hash algorithm, lightweight processing

中图分类号: