[1] |
ZHOU Baoding, ZHENG Tianjing, HUANG Jincai, et al. A pedestrian network construction system based on crowdsourced walking trajectories[J]. IEEE Internet of Things Journal, 2021, 8(9):7203-7213.
|
[2] |
ZHOU Baoding, LI Qingquan, MAO Qingzhou, et al. ALIMC:activity landmark-based indoor mapping via crowdsourcing[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5):2774-2785.
|
[3] |
KARIMI H A, KASEMSUPPAKORN P. Pedestrian network map generation approaches and recommendation[J]. International Journal of Geographical Information Science, 2013, 27(5):947-962.
|
[4] |
CHAO Pingfu, HUA Wen, MAO Rui, et al. A survey and quantitative study on map inference algorithms from GPS trajectories[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1):15-28.
|
[5] |
VALERO S, CHANUSSOT J, BENEDIKTSSON J A, et al. Advanced directional mathematical morphology for the detection of the road network in very high resolution remote sensing images[J]. Pattern Recognition Letters, 2010, 31(10):1120-1127.
|
[6] |
QIU J, WANG R, WANG X. Inferring road maps from sparsely-sampled GPS traces[C]//Proceedings of 2014 Canadian Conference on Artificial Intelligence. Cham:Springer, 2014:339-344.
|
[7] |
ZHANG Yunfei, ZHANG Zexu, HUANG Jincai, et al. A hybrid method to incrementally extract road networks using spatio-temporal trajectory data[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):186-200.
|
[8] |
DENG Min, HUANG Jincai, ZHANG Yunfei, et al. Generating urban road intersection models from low-frequency GPS trajectory data[J]. International Journal of Geographical Information Science, 2018, 32(12):2337-2361.
|
[9] |
ZHOU Baoding, MA Wei, LI Qingquan, et al. Crowdsourcing-based indoor mapping using smartphones:a survey[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 177(1):131-146.
|
[10] |
ELIAS B. Pedestrian navigation-creating a tailored geodatabase for routing[C]//Proceedings of the 4th Workshop on Positioning, Navigation and Communication. Hannover, Germany:IEEE, 2007:41-47.
|
[11] |
KIM J, PARK S, BANG Y, et al. Automatic derivation of a pedestrian network based on existing spatial data sets[C]//Proceedings of 2009 San Antonio ASPRS/MAPPS Fall Conference. San Antonio, Texas, USA:[s.n.],2009.
|
[12] |
BALLESTER M G, PÉREZ M R, STUIVER J. Automatic pedestrian network generation[C]//Proceedings of the 14th AGILE International Conference on Geographic Information Science. Utrecht, Netherlands:[s.n.],2011:1-13.
|
[13] |
HEIPKE C. Crowdsourcing geospatial data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(6):550-557.
|
[14] |
KASEMSUPPAKORN P, KARIMI H A. Pedestrian network data collection through location-based social networks[C]//Proceedings of the 5th International ICST Conference on Collaborative Computing:Networking, Applications, Worksharing. November 11-14, 2009. Crystal City, Washington DC, USA:IEEE, 2009.
|
[15] |
KASEMSUPPAKORN P, KARIMI H A. A pedestrian network construction algorithm based on multiple GPS traces[J]. Transportation Research Part C:Emerging Technologies, 2013, 26:285-300.
|
[16] |
XIE Xuejing, OU Guojian. Pedestrian network information extraction based on VGI[J]. Geomatica, 2018, 72(3):85-99.
|
[17] |
GOODCHILD M F. Citizens as sensors:the world of volunteered geography[J]. GeoJournal, 2007, 69(4):211-221.
|
[18] |
YANG Xue, TANG Luliang, REN Chang, et al. Pedestrian network generation based on crowdsourced tracking data[J]. International Journal of Geographical Information Science, 2020, 34(5):1051-1074.
|
[19] |
DEY T K, WANG J, WANG Y. Improved road network reconstruction using discrete morse theory[C]//Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Redondo Beach, CA, USA:ACM,2017:1-4.
|
[20] |
KARAM S, VOSSELMAN G, PETER M, et al. Design, calibration, and evaluation of a backpack indoor mobile mapping system[J]. Remote Sensing, 2019, 11(8):905.
|
[21] |
LI Yan, KHOSHELHAM K, SARVI M, et al. Direct generation of level of service maps from images using convolutional and long short-term memory networks[J]. Journal of Intelligent Transportation Systems, 2019, 23(3):300-308.
|
[22] |
ISMAIL H, BALACHANDRAN B. Algorithm fusion for feature extraction and map construction from SONAR data[J]. IEEE Sensors Journal, 2015, 15(11):6460-6471.
|
[23] |
LUO R C, LAI C C. Enriched indoor map construction based on multisensor fusion approach for intelligent service robot[J]. IEEE Transactions on Industrial Electronics, 2012, 59(8):3135-3145.
|
[24] |
WEN Chenglu, PAN Siyu, WANG Cheng, et al. An indoor backpack system for 2D and 3D mapping of building interiors[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(7):992-996.
|
[25] |
吴恩超, 张恒才, 吴升. 基于中轴变换算法的室内外一体化导航路网自动生成方法[J]. 地球信息科学学报, 2018, 20(6):730-737. WU Enchao, ZHANG Hengcai, WU Sheng. Automatic generation method of indoor and outdoor integrated navigation network based on medial axis transform algorithm[J]. Journal of Geo-information Science, 2018, 20(6):730-737.
|
[26] |
李清泉, 周宝定, 马威, 等. GIS辅助的室内定位技术研究进展[J]. 测绘学报, 2019, 48(12):1498-1506. DOI:10.11947/j.AGCS.2019.20190455. LI Qingquan, ZHOU Baoding, MA Wei, et al. Research process of GIS-aided indoor localization[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1498-1506. DOI:10.11947/j.AGCS.2019.20190455.
|
[27] |
陈锐志, 郭光毅, 叶锋, 等. 智能手机音频信号与MEMS传感器的紧耦合室内定位方法[J]. 测绘学报, 2021, 50(2):143-152. DOI:10.11947/j.AGCS.2021.20200551. CHEN Ruizhi, GUO Guangyi, YE Feng, et al. Tightly-coupled integration of acoustic signal and MEMS sensors on smartphones for indoor positioning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2):143-152. DOI:10.11947/j.AGCS.2021.20200551.
|
[28] |
CHEN Jianfan, ZHOU Baoding, BAO Shaoqian, et al. A data-driven inertial navigation/bluetooth fusion algorithm for indoor localization[J]. IEEE Sensors Journal, 2021, early access. DOI:10.1109/JSEN.2021.3089516.
|
[29] |
ZHOU Baoding, YANG Jun, LI Qingquan. Smartphone-based activity recognition for indoor localization using a convolutional neural network[J]. Sensors, 2019, 19(3):621.
|
[30] |
ZHOU Baoding, LI Qingquan, MAO Qingzhou, et al. Activity sequence-based indoor pedestrian localization using smartphones[J]. IEEE Transactions on Human-Machine Systems, 2015, 45(5):562-574.
|
[31] |
GU Fuqiang, CHUNG M H, CHIGNELL M, et al. A survey on deep learning for human activity recognition[J]. ACM Computing Surveys, 2022, 54(8):1-34.
|
[32] |
陶涛, 孙玉娥, 陈冬梅, 等. 一种基于智能手机传感器数据的地图轮廓生成方法[J]. 计算机研究与发展, 2020, 57(7):1490-1507. TAO Tao, SUN Yue, CHEN Dongmei, et al. A method of map outlines generation based on smartphone sensor data[J]. Journal of Computer Research and Development, 2020, 57(7):1490-1507.
|
[33] |
PEI Ling, GUINNESS R, CHEN Ruizhi, et al. Human behavior cognition using smartphone sensors[J]. Sensors (Basel, Switzerland), 2013, 13(2):1402-1424.
|
[34] |
LIU Jingbin, CHEN Yuwei, JAAKKOLA A, et al. The uses of ambient light for ubiquitous positioning[C]//Proceedings of 2014 IEEE/ION Position, Location and Navigation Symposium. Monterey, CA, USA:IEEE, 2014:102-108.
|
[35] |
PEI Ling, CHEN Ruizhi, LIU Jingbin, et al. Inquiry-based bluetooth indoor positioning via RSSI probability distributions[C]//Proceedings of 2010 International Conference on Advances in Satellite and Space Communications. Athens, Greece:IEEE, 2010:151-156.
|
[36] |
LI Mo, ZHOU Pengfei, ZHENG Yuanqing, et al. IODetector[J]. ACM Transactions on Sensor Networks, 2015, 11(2):1-29.
|
[37] |
CHEN Kongyang, TAN Guang. SatProbe:low-energy and fast indoor/outdoor detection via satellite existence sensing[J]. IEEE Transactions on Mobile Computing, 2021, 20(3):1198-1211.
|
[38] |
LIU Xu, ZHOU Baoding, HUANG Panpan, et al. Kalman filter-based data fusion of Wi-Fi RTT and PDR for indoor localization[J]. IEEE Sensors Journal, 2021, 21(6):8479-8490.
|
[39] |
KANG W, NAM S, HAN Y, et al. Improved heading estimation for smartphone-based indoor positioning systems[C]//Proceedings of 2012 IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Sydney, Australia:IEEE, 2012.
|
[40] |
WANG Suyi, WANG Yusu, LI Yanjie. Efficient map reconstruction and augmentation via topological methods[C]//Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle, USA:IEEE, 2015:1-10.
|
[41] |
张春亢. 基于Morse理论的三角网格特征提取及简化研究[J]. 测绘学报, 2021, 50(1):142. DOI:10.11947/j.AGCS.2021.20190491. ZHANG Chunkang. Research on features extraction and simplification from triangle mesh based on Morse theory[J].Acta Geodaetica et Cartographica Sinica, 2021, 50(1):142. DOI:10.11947/j.AGCS.2021.20190491.
|
[42] |
EDELSBRUNNER H, LETSCHER D, ZOMORODIAN A. Topological Persistence and Simplification[C]//Proceedings of the 41st Annual Symposium on Foundations of Computer Science. Redondo Beach, CA, USA:IEEE, 2000:454-463.
|