测绘学报 ›› 2022, Vol. 51 ›› Issue (7): 1485-1519.doi: 10.11947/j.AGCS.2022.20220224
李振洪1,2,3, 朱武1,2,3, 余琛1,4, 张勤1,3, 张成龙1,2, 刘振江1,2, 张雪松1,2, 陈博1,2, 杜建涛1,2, 宋闯1,4, 韩炳权1,2, 周佳薇1,2
收稿日期:
2022-03-30
修回日期:
2022-07-01
发布日期:
2022-08-13
作者简介:
李振洪(1975-),男,博士,教授,主要研究方向包括影像大地测量、地质灾害、人工大型建筑物稳定性和精准农业。E-mail:Zhenhong.Li@chd.edu.cn
基金资助:
LI Zhenhong1,2,3, ZHU Wu1,2,3, YU Chen1,4, ZHANG Qin1,3, ZHNAG Chenglong1,2, LIU Zhenjiang1,2, ZHANG Xuesong1,2, CHEN Bo1,2, DU Jiantao1,2, SONG Chuang1,4, HAN Bingquan1,2, ZHOU Jiawei1,2
Received:
2022-03-30
Revised:
2022-07-01
Published:
2022-08-13
Supported by:
摘要: 随着合成孔径雷达(SAR)卫星的不断发射,合成孔径雷达干涉测量技术(interferometric synthetic aperture radar,InSAR)得到前所未有的发展机遇,同时也面临诸多挑战。本文首先简要介绍了SAR卫星发展现状与InSAR技术的基本原理,并系统梳理了干涉图堆叠(InSAR stacking)、小基线集干涉测量(small baseline subset InSAR,SBAS-InSAR)、永久散射体干涉测量(persistent scatterer InSAR,PS-InSAR)、分布式散射体干涉测量(distributed scatterer InSAR,DS-InSAR)和分频干涉测量(split-bandwidth interferometry,SBI)等先进InSAR技术的优缺点。在此基础上,指出目前InSAR技术面临的主要挑战(相位失相干、大气延迟、相位解缠、几何畸变和多维变形测量)及相应的解决方案。进一步从地震、火山、滑坡、地面沉降、冰川运动、人工建构筑物位移变形及大气水汽含量估计等不同的应用场景分析了InSAR技术的应用现状和存在的缺陷。最后,展望目前InSAR的发展趋势,随着更高空间分辨率,更高时间分辨率,更轻小化SAR卫星的不断发展,InSAR技术将会被应用到越来越多的新场景,激励我国雷达影像干涉测量更快发展。
中图分类号:
李振洪, 朱武, 余琛, 张勤, 张成龙, 刘振江, 张雪松, 陈博, 杜建涛, 宋闯, 韩炳权, 周佳薇. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报, 2022, 51(7): 1485-1519.
LI Zhenhong, ZHU Wu, YU Chen, ZHANG Qin, ZHNAG Chenglong, LIU Zhenjiang, ZHANG Xuesong, CHEN Bo, DU Jiantao, SONG Chuang, HAN Bingquan, ZHOU Jiawei. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519.
[1] ZEBKER H A, GOLDSTEIN R M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B5):4993-4999. [2] GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping small elevation changes over large areas:differential radar interferometry[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B7):9183-9191. [3] GOLDSTEIN R M, ENGELHARDT H, KAMB B, et al. Satellite radar interferometry for monitoring ice sheet motion:application to an antarctic ice stream[J]. Science, 1993, 262(5139):1525-1530. [4] ROGERS A E, INGALLS R P. Venus:mapping the surface reflectivity by radar interferometry[J]. Science, 1969, 165(3895):797-799. [5] GRAHAM L C. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 1974, 62(6):763-768. [6] MASSONNET D, ROSSI M, CARMONA C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433):138-142. [7] MASSONNET D, BRIOLE P, ARNAUD A. Deflation of Mount Etna monitored by spaceborne radar interferometry[J]. Nature, 1995, 375(6532):567-570. [8] ACHACHE J, FRUNEAU B, DELACOURT C. Applicability of SAR interferometry for operational monitoring of landslides[C]//Proceeding of the 2nd ERS Applications Workshop. London, UK:ESA, 1996. [9] CARNEC C, DELACOURT C. Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France[J]. Journal of Applied Geophysics, 2000, 43(1):43-54. [10] SANDWELL D T, PRICE E J. Phase gradient approach to stacking interferograms[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B12):30183-30204. [11] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[C]//Proceedings of 1999 International Geoscience and Remote Sensing Symposium. Hamburg, Germany:IEEE, 1999:1528-1530. [12] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20. [13] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscienceand Remote Sensing, 2002, 40(11):2375-2383. [14] BECHOR N B D, ZEBKER H A. Measuring two-dimensional movements using a single InSAR pair[J]. Geophysical Research Letters, 2006, 33(16):L16311. [15] FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470. [16] LI Zhenhong, YU Chen, XIAO Ruya,et al. Entering a new era of InSAR:advanced techniques and emerging applications[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1):1-4. DOI:10.11947/j.JGGS.2022.0101. [17] 王超.利用航天飞机成象雷达干涉数据提取数字高程模型[J].遥感学报, 1997, 1(1):46-49. WANG Chao. Using SIR-C interferometric data for DEM acquisition[J]. Journal of Remote Sensing, 1997, 1(1):46-49. [18] 张景发,邵芸.干涉成像雷达(INSAR)技术及其应用现状[J].地震地质, 1998, 20(3):277-288. ZHANG Jingfa, SHAO Yun. SAR interferometry and its application review[J]. Seismology and Geology, 1998, 20(3):277-288. [19] 游新兆,李澍荪,杨少敏,等.长江三峡工程库首区InSAR测量的初步研究[J].地壳形变与地震, 2001, 21(4):58-66. YOU Xinzhao, LI Shusun, YANG Shaomin, et al. InSAR investigation in the early stage of the Three Gorges project on the Yangtze River[J]. Crustal Deformation and Earthquake, 2001, 21(4):58-66. [20] CHENG Xiao, XU Guanhua. The integration of JERS-1 and ERS SAR in differential interferometry for measurement of complex glacier motion[J]. Journal of Glaciology, 2006, 52(176):80-88. [21] 程晓,李小文,邵芸,等.南极格罗夫山地区冰川运动规律DINSAR遥感研究[J].科学通报, 2006, 51(17):2060-2067. CHENG Xiao, LI Xiaowen, SHAO Yun, et al. D-InSAR remote sensing study of glacier movement in the Groff Mountains, Antarctica[J]. Chinese Science Bulletin, 2006, 51(17):2060-2067. [22] 陈国浒,单新建, MOON W M,等.基于InSAR、GPS形变场的长白山地区火山岩浆囊参数模拟研究[J].地球物理学报, 2008, 51(4):1085-1092. CHEN Guohu, SHAN Xinjian, MOON W M, et al. A modeling of the magma chamber beneath the Changbai Mountains volcanic area constrained by InSAR and GPS derived deformation[J]. Chinese Journal of Geophysics, 2008, 51(4):1085-1092. [23] LI Zhenhong. Correction of atmospheric water vapour effects on repeat-pass SAR interferometry using GPS, MODIS and MERIS data[D]. London:University of London, 2005. [24] ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3):333-382. [25] ZISK S H. A new, earth-based radar technique for the measurement of lunar topography[J]. The Moon, 1972, 4(3):296-306. [26] XIA Ye. Synthetic aperture radar interferometry[M]. Sciences of Geodesy-I. Springer, 2010:415-74. [27] HANSSEN R F. Radar interferometry:data interpretation and error analysis[M]. Boston, MA:Kluwer Academic, 2001. [28] BVRGMANN R, ROSEN P A, FIELDING E J. Synthetic aperture radar interferometry to measure earth's surface topography and its deformation[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):169-209. [29] ZEBKER H A, ROSEN P A, HENSLEY S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B4):7547-7563. [30] LI Zhenhong, LIU Yanxiong, ZHOU Xinghua, et al. Using small baseline interferometric SAR to map nonlinear ground motion:a case study in Northern Tibet[J]. Journal of Applied Geodesy, 2009, 3(3):163-170. [31] XIAO Ruya, YU Chen, LI Zhenhong, et al. General survey of large-scale land subsidence by GACOS-corrected InSAR stacking:case study in North China plain[J]. Proceedings of the International Association of Hydrological Sciences, 2020, 382:213-218. [32] WRIGHT T, PARSONS B, FIELDING E. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry[J]. Geophysical Research Letters, 2001, 28(10):2117-2120. [33] 张成龙,李振洪,余琛,等.利用GACOS辅助下InSAR Stacking对金沙江流域进行滑坡监测[J].武汉大学学报(信息科学版), 2021, 46(11):1649-1657. ZHANG Chenglong, LI Zhenhong, YU Chen, et al. Landslide detection of the Jinsha River region using GACOS assisted InSAR stacking[J]. Geomatics and Information Science of Wuhan University,2021, 46(11):1649-1657. [34] YU Chen, LI Zhenhong, BAI Lin, et al. Successful applications of generic atmospheric correction online service for InSAR (GACOS) to the reduction of atmospheric effects on InSAR observations[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1):109-115. DOI:10.11947/j.JGGS.2021.0113. [35] FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212. [36] HOOPER A, ZEBKER H, SEGALL P, et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 2004, 31(23):L23611. [37] HOOPER A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008, 35(16):L16302. [38] JIANG Mi, DING Xiaoli, HANSSEN R F, et al. Fast statistically homogeneous pixel selection for covariance matrix estimation for multitemporal InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3):1213-1224. [39] WANG Guanya, XU Bing, LI Zhiwei, et al. A phase optimization method for DS-InSAR based on SKP decomposition from quad-polarized data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [40] LAUKNES T R, ZEBKER H A, LARSEN Y. InSAR deformation time series using an L1-norm small-baseline approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1):536-546. [41] WERNER C L, STROZZI T, WEGMVLLER U. Deformation time-series of the lost hills oil field using a multi-baseline interferometric SAR inversion algorithm with finite-difference smoothing constraints[C]//Proceedings of 2012 American Geophysical Union Fall Meeting. San Francisco, CA:AGU, 2012. [42] SCHMIDT D A, BVRGMANN R. Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B9):2416. [43] DOIN M P, LODGE F, GUILLASO S, et al. Presentation of the small baseline NSBAS processing chain on a case example:the Etna deformation monitoring from 2003 to 2010 using Envisat data[C]//Proceedings of 2011 Fringe ESA Conference. Frascati, Italy:[s.n.], 2011. [44] USAI S. A least squares database approach for SAR interferometric data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4):753-760. [45] GEE D, SOWTER A, NOVELLINO A, et al. Monitoring land motion due to natural gas extraction:validation of the Intermittent SBAS (ISBAS) DInSAR algorithm over gas fields of North Holland, the Netherlands[J]. Marine and Petroleum Geology, 2016, 77:1338-1354. [46] LANARI R, MORA O, MANUNTA M, et al. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7):1377-1386. [47] OJHA C, MANUNTA M, LANARI R, et al. The constrained-network propagation (C-NetP) technique to improve SBAS-DInSAR deformation time series retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10):4910-4921. [48] SOWTER A, BATESON L, STRANGE P, et al. DInSAR estimation of land motion using intermittent coherence with application to the South Derbyshire and Leicestershire coalfields[J]. Remote Sensing Letters, 2013, 4(10):979-987. [49] CASU F, ELEFANTE S, IMPERATORE P, et al. SBAS-DInSAR parallel processing for deformation time-series computation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8):3285-3296. [50] SAMSONOV S, D'OREYE N. Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province[J]. Geophysical Journal International, 2012, 191(3):1095-1108. [51] CASU F, MANCONI A, PEPE A, et al. Deformation time-series generation in areas characterized by large displacement dynamics:the SAR amplitude pixel-offset SBAS technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7):2752-2763. [52] LI Zhenhong, FIELDING E J, CROSS P. Integration of InSAR time-series analysis and water-vapor correction for mapping postseismic motion after the 2003 bam (Iran) earthquake[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(9):3220-3230. [53] YU Chen, LI Zhenhong, PENNA N T. Triggered afterslip on the southern Hikurangi subduction interface following the 2016 Kaikōura earthquake from InSAR time series with atmospheric corrections[J]. Remote Sensing of Environment, 2020, 251:112097. [54] PARK S W, HONG S H. Nonlinear modeling of subsidence from a decade of InSAR time series[J]. Geophysical Research Letters, 2021, 48(3):e2020GL090970. [55] BIGGS J, WRIGHT T, LU Zhong, et al. Multi-interferogram method for measuring interseismic deformation:Denali Fault, Alaska[J]. Geophysical Journal International, 2007, 170(3):1165-1179. [56] ZHAO Chaoying, LU Zhong, ZHANG Qin, et al. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA[J]. Remote Sensing of Environment, 2012, 124:348-359. [57] MANCONI A, CASU F. Joint analysis of displacement time series retrieved from SAR phase and amplitude:impact on the estimation of volcanic source parameters[J]. Geophysical Research Letters, 2012, 39(14):L14301. [58] SAMSONOV S. Three-dimensional deformation time series of glacier motion from multiple-aperture DInSAR observation[J]. Journal of Geodesy, 2019, 93(12):2651-2660. [59] BVRGMANN R, HILLEY G, FERRETTI A, et al. Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis[J]. Geology, 2006, 34(3):221-224. [60] FUNNING G J, BVRGMANN R, FERRETTI A, et al. Creep on the rodgers creek fault, northern San Francisco bay Area from a 10 year PS-InSAR dataset[J]. Geophysical Research Letters, 2007, 34(19):L19306. [61] HOOPER A, BEKAERT D, SPAANS K, et al. Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J]. Tectonophysics, 2012, 514-517:1-13. [62] LAGIOS E, PAPADIMITRIOU P, NOVALI F, et al. Combined seismicity pattern analysis, DGPS and PSInSAR studies in the broader area of Cephalonia (Greece)[J]. Tectonophysics, 2012, 524-525:43-58. [63] MASSIRONI M, ZAMPIERI D, BIANCHI M, et al. Use of PSInSARTM data to infer active tectonics:clues on the differential uplift across the Giudicarie belt (Central-Eastern Alps, Italy)[J]. Tectonophysics, 2009, 476(1-2):297-303. [64] PELTIER A, BIANCHI M, KAMINSKI E, et al. PSInSAR as a new tool to monitor pre-eruptive volcano ground deformation:validation using GPS measurements on Piton de la Fournaise[J]. Geophysical Research Letters, 2010, 37(12):L12301. [65] WERNER C, WEGMULLER U, WIESMANN A, et al. Interferometric point target analysis with JERS-1 L-band SAR data[C]//Proceedings of 2003 IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Toulouse, France:IEEE, 2003. [66] HOOPER A, SEGALL P, ZEBKER H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B7):B07407. [67] PERISSIN D, WANG Teng. Repeat-pass SAR interferometry with partially coherent targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1):271-280. [68] BLANCO-SÁNCHEZ P, MALLORQUÍ J J, DUQUE S, et al. The coherent pixels technique (CPT):an advanced DInSAR technique for nonlinear deformation monitoring[J]. Pure and Applied Geophysics, 2008, 165(6):1167-1193. [69] CROSETTO M, MONSERRAT O, CUEVAS-GONZÁLEZ M, et al. Persistent scatterer interferometry:a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115:78-89. [70] 朱建军,李志伟,胡俊. InSAR变形监测方法与研究进展[J].测绘学报, 2017, 46(10):1717-1733. DOI:10.11947/j.AGCS.2017.20170350. ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733. DOI:10.11947/j.AGCS.2017.20170350. [71] 蒋弥,丁晓利,李志伟.时序InSAR同质样本选取算法研究[J].地球物理学报, 2018, 61(12):4767-4776. JIANG Mi, DING Xiaoli, LI Zhiwei. Homogeneous pixel selection algorithm for multitemporal InSAR[J]. Chinese Journal of Geophysics, 2018, 61(12):4767-4776. [72] PARIZZI A, BRCIC R. Adaptive InSAR stack multilooking exploiting amplitude statistics:a comparison between different techniques and practical results[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3):441-445. [73] GOEL K, ADAM N. An advanced algorithm for deformation estimation in non-urban areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73:100-110. [74] 蒋弥,丁晓利,何秀凤,等.基于快速分布式目标探测的时序雷达干涉测量方法:以Lost Hills油藏区为例[J].地球物理学报, 2016, 59(10):3592-3603. JIANG Mi, DING Xiaoli, HE Xiufeng, et al. FaSHPS-InSAR technique for distributed scatterers:a case study over the lost hills oil field, California[J]. Chinese Journal of Geophysics, 2016, 59(10):3592-3603. [75] FORNARO G, VERDE S, REALE D, et al. CAESAR:an approach based on covariance matrix decomposition to improve multibaseline-multitemporal interferometric SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4):2050-2065. [76] WANG Yuanyuan, ZHU Xiaoxiang. Robust estimators for multipass SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2):968-980. [77] ANSARI H,DE ZAN F, BAMLER R. Sequential estimator:a novel approach for efficient high-precision analysis of interferometric time series[C]//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, TX, USA:IEEE, 2017. [78] ANSARI H,DE ZAN F, GOMBA G, et al. EMI:efficient temporal phase estimation and its impact on high-precision InSAR time series analysis[C]//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan:IEEE, 2019. [79] SCHEIBER R, MOREIRA A. Coregistration of interferometric SAR images using spectral diversity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2179-2191. [80] BEN-DOV N B, HERRING T A. Multiple aperture INSAR (MAI) with C-band and L-band data:noise and precision[R]. Cambridge, MA:Massachusetts Institute of Technology, 2012. [81] JIANG Houjun, FENG Guangcai, WANG Teng, et al. Toward full exploitation of coherent and incoherent information in Sentinel-1 TOPS data for retrieving surface displacement:application to the 2016 Kumamoto (Japan) earthquake[J]. Geophysical Research Letters, 2017, 44(4):1758-1767. [82] JO M J, JUNG H S, WON J S. Measurement of precise three-dimensional volcanic deformations via TerraSAR-X synthetic aperture radar interferometry[J]. Remote Sensing of Environment, 2017, 192:228-237. [83] FENG Wanpeng, LI Zhenhong, ELLIOTT J R, et al. The 2011Mw 6.8 Burma earthquake:fault constraints provided by multiple SAR techniques[J]. Geophysical Journal International, 2013, 195(1):650-660. [84] LIU Jihong, HU Jun, LI Zhiwei, et al. Complete three-dimensional coseismic displacements due to the 2021 Maduo earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR images[J]. Science China Earth Sciences, 2022, 65(4):687-697. [85] LU Zhong, DZURISIN D, BIGGS J, et al. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis:1. Intereruption deformation, 1997-2008[J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B5):B00B02. [86] SHI Xuguo, JIANG Houjun, ZHANG Lu, et al. Landslide displacement monitoring with split-bandwidth interferometry:a case study of the shuping landslide in the Three Gorges area[J]. Remote Sensing, 2017, 9(9):937. [87] LUO Haibin, LI Zhenhong, CHEN Jiajun, et al. Integration of range split spectrum interferometry and conventional InSAR to monitor large gradient surface displacements[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 74:130-137. [88] CURLANDER J C, MCDONOUGH R N. Synthetic aperture radar:systems and signal processing[M]. New York:Wiley, 1991. [89] JIANG Mi, DING Xiaoli, LI Zhiwei. Hybrid approach for unbiased coherence estimation for multitemporal InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2459-2473. [90] 葛大庆.区域性地面沉降InSAR监测关键技术研究[D].北京:中国地质大学(北京), 2013. GE Daqing. Research on the key techniques of SAR interferometry for regional land subsidence monitoring[D]. Beijing:China University of Geosciences (Beijing), 2013. [91] COLIN E, TITIN-SCHNAIDER C, TABBARA W. An interferometric coherence optimization method in radar polarimetry for high-resolution imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(1):167-175. [92] AHMED R, SIQUEIRA P, HENSLEY S, et al. A survey of temporal decorrelation from spaceborne L-band repeat-pass InSAR[J]. Remote Sensing of Environment, 2011, 115(11):2887-2896. [93] SICA F, BRETZKE S, PULELLA A, et al. InSAR decorrelation at X-band from the joint TanDEM-X/PAZ constellation[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(12):2107-2111. [94] JUNG J, KIM D J, LAVALLE M, et al. Coherent change detection using InSAR temporal decorrelation model:a case study for volcanic ash detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):5765-5775. [95] MASSONNET D, FEIGL K L. Radar interferometry and its application to changes in the Earth's surface[J]. Reviews of Geophysics, 1998, 36(4):441-500. [96] JUNG H S, WON J S, KIM S W. An improvement of the performance of multiple-aperture SAR interferometry (MAI)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8):2859-2869. [97] STROZZI T, LUCKMAN A, MURRAY T, et al. Glacier motion estimation using SAR offset-tracking procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2384-2391. [98] LIANG Cunren, AGRAM P, SIMONS M, et al. Ionospheric correction of InSAR time series analysis of C-band Sentinel-1 TOPS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6755-6773. [99] HUANG M H, TUNG H, FIELDING E J, et al. Multiple fault slip triggered above the 2016Mw 6.4 MeiNong earthquake in Taiwan[J]. Geophysical Research Letters, 2016, 43(14):7459-7467. [100] GRAY A L, MATTAR K E, SOFKO G. Influence of ionospheric electron density fluctuations on satellite radar interferometry[J]. Geophysical Research Letters, 2000, 27(10):1451-1454. [101] JOUGHIN I, WINEBRENNER D, FAHNESTOCK M, et al. Measurement of ice-sheet topography using satellite-radar interferometry[J]. Journal of Glaciology, 1996, 42(140):10-22. [102] ZHANG Bochen, ZHU Wu, DING Xiaoli, et al. A review of methods for mitigating ionospheric artifacts in differential SAR interferometry[J]. Geodesy and Geodynamics, 2022, 13(2):160-169. [103] HE Yufang, ZHU Wu, LEI Yang, et al. A comparative study of ionospheric correction on SAR interferometry-a case study of L'Aquila earthquake[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1):5-13. DOI:10.11947/j.JGGS.2022.0102. [104] ZHU Wu, JUNG H S, CHEN Jingyuan. Synthetic aperture radar interferometry (InSAR) ionospheric correction based on Faraday rotation:two case studies[J]. Applied Sciences, 2019, 9(18):3871. [105] ZHANG Bochen, DING Xiaoli, ZHU Wu, et al. Mitigating ionospheric artifacts in coseismic interferogram based on offset field derived from ALOS-PALSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7):3050-3059. [106] ZHU Wu, LEI Yang, SUN Quan. Detection, estimation and compensation of ionospheric effect on SAR interferogram using azimuth shift[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1):14-24. DOI:10.11947/j.JGGS.2022.0103. [107] ZHANG Bochen, WANG Chisheng, DING Xiaoli, et al. Correction of ionospheric artifacts in SAR data:application to fault slip inversion of 2009 southern Sumatra earthquake[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(9):1327-1331. [108] FATTAHI H, SIMONS M, AGRAM P. InSAR time-series estimation of the ionospheric phase delay:an extension of the split range-spectrum technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5984-5996. [109] GOMBA G, PARIZZI A, DE ZAN F, et al. Toward operational compensation of ionospheric effects in SAR interferograms:the split-spectrum method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3):1446-1461. [110] JOLIVET R, AGRAM P S, LIN N Y, et al. Improving InSAR geodesy using global atmospheric models[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(3):2324-2341. [111] DOIN M P, LASSERRE C, PELTZER G, et al. Corrections of stratified tropospheric delays in SAR interferometry:validation with global atmospheric models[J]. Journal of Applied Geophysics, 2009, 69(1):35-50. [112] LI Zhenhong, FIELDING E J, CROSS P, et al. Interferometric synthetic aperture radar atmospheric correction:GPS topography-dependent turbulence model[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B2):B02404. [113] EBMEIER S K. Application of independent component analysis to multitemporal InSAR data with volcanic case studies[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(12):8970-8986. [114] BEKAERT D P S, HOOPER A, WRIGHT T J. A spatially variable power law tropospheric correction technique for InSAR data[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(2):1345-1356. [115] ONN F, ZEBKER H A. Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B9):B09102. [116] YU Chen, LI Zhenhong, PENNA N T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J]. Remote Sensing of Environment, 2018, 204:109-121. [117] YU Chen, LI Zhenhong, PENNA N T, et al. Generic atmospheric correction model for interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(10):9202-9222. [118] 李振洪,张雪松.一种结合GACOS的星载InSAR大气校正方法:中国, 114415131A[P]. 2022-04-29. LI Zhenhong, ZHANG Xuesong. Reduction of atmospheric effects on InSAR observations through incorporation of GACOS and PCA into small baseline subset InSAR:CN, 114415131A[P]. 2022-04-29. [119] YU Hanwen, LAN Yang, YUAN Zhihui, et al. Phase unwrapping in InSAR:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(1):40-58. [120] GOLDSTEIN R M, ZEBKER H A, WERNER C L. Satellite radar interferometry:two-dimensional phase unwrapping[J]. Radio Science, 1988, 23(4):713-720. [121] ZUO Chao, HUANG Lei, ZHANG Minliang, et al. Temporal phase unwrapping algorithms for fringe projection profilometry:a comparative review[J]. Optics and Lasers in Engineering, 2016, 85:84-103. [122] ZHOU Lifan, YU Hanwen, LAN Yang, et al. Artificial intelligence in interferometric synthetic aperture radar phase unwrapping:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(2):10-28. [123] TRIBOLET J. A new phase unwrapping algorithm[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1977, 25(2):170-177. [124] BUCKLAND J R, HUNTLEY J M, TURNER S R E. Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm[J]. Applied Optics, 1995, 34(23):5100-5108. [125] QUIROGA J A, GONZÁLEZ-CANO A, BERNABEU E. Stable-marriages algorithm for preprocessing phase maps with discontinuity sources[J]. Applied Optics, 1995, 34(23):5029-5038. [126] CUSACK R, HUNTLEY J M, GOLDREIN H T. Improved noise-immune phase-unwrapping algorithm[J]. Applied Optics, 1995, 34(5):781-789. [127] GUTMANN B, WEBER H. Phase unwrapping with the branch-cut method:role of phase-field direction[J]. Applied Optics, 2000, 39(26):4802-4816. [128] KAROUT S A, GDEISAT M A, BURTON D R, et al. Residue vector, an approach to branch-cut placement in phase unwrapping:theoretical study[J]. Applied Optics, 2007, 46(21):4712-4727. [129] ZHENG Dongliang, DA Feipeng. A novel algorithm for branch cut phase unwrapping[J]. Optics and Lasers in Engineering, 2011, 49(5):609-617. [130] HOOPER A, ZEBKER H A. Phase unwrapping in three dimensions with application to InSAR time series[J]. Journal of the Optical Society of America A, 2007, 24(9):2737-2747. [131] GHIGLIA D C, ROMERO L A. Minimum Lp-norm two-dimensional phase unwrapping[J]. Journal of the Optical Society of America A, 1996, 13(10):1999-2013. [132] FLYNN T J. Two-dimensional phase unwrapping with minimum weighted discontinuity[J]. Journal of the Optical Society of America A, 1997, 14(10):2692-2701. [133] COSTANTINI M. A novel phase unwrapping method based on network programming[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3):813-821. [134] CHEN C W, ZEBKER H A. Network approaches to two-dimensional phase unwrapping:intractability and two new algorithms[J]. Journal of the Optical Society of America A, 2000, 17(3):401-414. [135] CHEN C W, ZEBKER H A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization[J]. Journal of the Optical Society of America A, 2001, 18(2):338-351. [136] 戴可人,张乐乐,宋闯,等.川藏铁路沿线Sentinel-1影像几何畸变与升降轨适宜性定量分析[J].武汉大学学报(信息科学版), 2021, 46(10):1450-1460. DAI Keren, ZHANG Lele, SONG Chuang, et al. Quantitative analysis of Sentinel-1 imagery geometric distortion and their suitability along Sichuan-Tibet railway[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1450-1460. [137] SUN Qian, HU Jun, ZHANG Lei, et al. Towards slow-moving landslide monitoring by integrating multi-sensor InSAR time series datasets:the Zhouqu case study, China[J]. Remote Sensing, 2016, 8(11):908. [138] KROPATSCH W G, STROBL D. The generation of SAR layover and shadow maps from digital elevation models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(1):98-107. [139] ZHANG Peng, CHEN Lifu, LI Zhenhong, et al. Automatic extraction of water and shadow from SAR images based on a multi-resolution dense encoder and decoder network[J]. Sensors, 2019, 19(16):3576. [140] 李振洪,宋闯,余琛,等.卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J].武汉大学学报(信息科学版), 2019, 44(7):967-979. LI Zhenhong, SONG Chuang, YU Chen, et al. Application of satellite radar remote sensing to landslide detection and monitoring:challenges and solutions[J].Geomatics and Information Science of Wuhan University, 2019, 44(7):967-979. [141] GRANDIN R, KLEIN E, MÉTOIS M, et al. Three-dimensional displacement field of the 2015Mw 8.3 Illapel earthquake (Chile) from across-and along-track Sentinel-1 TOPS interferometry[J]. Geophysical Research Letters, 2016, 43(6):2552-2561. [142] LI Xing, JÓNSSON S, CAO Yunmeng. Interseismic deformation from Sentinel-1 burst-overlap interferometry:application to the southern dead sea fault[J]. Geophysical Research Letters, 2021, 48(16):e2021GL093481. [143] LIU Jihong, HU Jun, LI Zhiwei, et al. Three-dimensional surface displacements of the 8 January 2022Mw 6.7 Menyuan earthquake, China from Sentinel-1 and ALOS-2 SAR observations[J]. Remote Sensing, 2022, 14(6):1404. [144] FIALKO Y, SIMONS M, AGNEW D. The complete (3-D) surface displacement field in the epicentral area of the 1999Mw 7.1 Hector Mine Earthquake, California, from space geodetic observations[J]. Geophysical Research Letters, 2001, 28(16):3063-3066. [145] WRIGHTT J, PARSONS B E, LU Zhong. Toward mapping surface deformation in three dimensions using InSAR[J]. Geophysical Research Letters, 2004, 31(1):L01607. DOI:10.1029/2003GL018827. [146] SAMSONOV S, D'OREYE N, SMETS B. Ground deformation associated with post-mining activity at the French-German border revealed by novel InSAR time series method[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 23:142-154. [147] 朱建军,杨泽发,李志伟. InSAR矿区地表三维形变监测与预计研究进展[J].测绘学报, 2019, 48(2):135-144. DOI:10.11947/j.AGCS.2019.20180188. ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):135-144. DOI:10.11947/j.AGCS.2019.20180188. [148] LI Zhiwei, YANG Zefa, ZHU Jianjun, et al. Retrieving three-dimensional displacement fields of mining areas from a single InSAR pair[J]. Journal of Geodesy, 2015, 89(1):17-32. [149] HU Jun, LIU Jihong, LI Zhiwei, et al. Estimating three-dimensional coseismic deformations with the SM-VCE method based on heterogeneous SAR observations:selection of homogeneous points and analysis of observation combinations[J]. Remote Sensing of Environment, 2021, 255:112298. [150] 刘计洪,胡俊,李志伟,等. InSAR三维同震地表形变监测-窗口优化的SM-VCE算法[J].测绘学报, 2021, 50(9):1222-1239. DOI:10.11947/j.AGCS.2021.20200610. LIU Jihong, HU Jun, LI Zhiwei, et al. Estimation of 3D coseismic deformation with InSAR:an improved SM-VCE method by window optimization[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9):1222-1239. DOI:10.11947/j.AGCS.2021.20200610. [151] SCHOLZ C H. Earthquakes and friction laws[J]. Nature, 1998, 391(6662):37-42. [152] ELLIOTT J R, WALTERS R J, WRIGHT T J. The role of space-based observation in understanding and responding to active tectonics and earthquakes[J]. Nature Communications, 2016, 7(1):13844. [153] SALVI S, STRAMONDO S, FUNNING G J, et al. The Sentinel-1 mission for the improvement of the scientific understanding and the operational monitoring of the seismic cycle[J]. Remote Sensing of Environment, 2012, 120:164-174. |
[1] | 张祖勋, 姜慧伟, 庞世燕, 胡翔云. 多时相遥感影像的变化检测研究现状与展望[J]. 测绘学报, 2022, 51(7): 1091-1107. |
[2] | 江碧涛. 我国空间对地观测技术的发展与展望[J]. 测绘学报, 2022, 51(7): 1153-1159. |
[3] | 彭认灿, 董箭, 贾帅东, 唐露露, 王芳. 数字水深模型建模技术研究进展与展望[J]. 测绘学报, 2022, 51(7): 1575-1587. |
[4] | 龚健雅, 宦麟茜, 郑先伟. 影像解译中的深度学习可解释性分析方法[J]. 测绘学报, 2022, 51(6): 873-884. |
[5] | 朱长青, 任娜, 徐鼎捷. 地理信息安全技术研究进展与展望[J]. 测绘学报, 2022, 51(6): 1017-1028. |
[6] | 朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2): 135-144. |
[7] | 吴华意, 黄蕊, 游兰, 向隆刚. 出租车轨迹数据挖掘进展[J]. 测绘学报, 2019, 48(11): 1341-1356. |
[8] | 廖克. 中国地图学发展的回顾与展望[J]. 测绘学报, 2017, 46(10): 1517-1525. |
[9] | 汤国安, 那嘉明, 程维明. 我国区域地貌数字地形分析研究进展[J]. 测绘学报, 2017, 46(10): 1570-1591. |
[10] | 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733. |
[11] | 翟国君, 黄谟涛. 海洋测量技术研究进展与展望[J]. 测绘学报, 2017, 46(10): 1752-1759. |
[12] | 黄先锋 李卉 王潇 张帆 . 机载LiDAR数据滤波方法评述 [J]. 测绘学报, 2009, 38(5): 0-469. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||