测绘学报 ›› 2022, Vol. 51 ›› Issue (7): 1653-1668.doi: 10.11947/j.AGCS.2022.20220192
• 地图学与地理信息 • 上一篇
范红超1, 孔格菲1, 杨岸然2
收稿日期:
2022-03-14
修回日期:
2022-04-24
发布日期:
2022-08-13
作者简介:
范红超(1977-),男,博士,教授,从事基于众源地理信息数据的时空分析与知识提取,数据质量分析,以及基于众源地理信息数据的三维目标提取与三维建模。E-mail:hongchao.fan@ntnu.no
基金资助:
FAN Hongchao1, KONG Gefei1, YANG Anran2
Received:
2022-03-14
Revised:
2022-04-24
Published:
2022-08-13
Supported by:
摘要: 众源地理信息作为新型地理信息模式,是指由互联网用户借助交互式平台,通过直接上传传感器数据或提供数字化劳动而贡献的地理信息数据。近20年来,众源地理信息热度上升,并受到越来越多研究者的关注,正在逐渐成为一种重要的地理信息数据来源。本文对近十几年来关于众源地理信息的中文和英文文献进行了系统性的分析与研究,力图展现出众源地理信息研究的发展现状,同时以这些研究发现的规律为基础,结合当前的国际形势,探讨了众源地理信息的发展机遇与挑战,同时对发展自主众源地理信息给出了建议。
中图分类号:
范红超, 孔格菲, 杨岸然. 众源地理信息研究现状与展望[J]. 测绘学报, 2022, 51(7): 1653-1668.
FAN Hongchao, KONG Gefei, YANG Anran. Current status and prospects of research for volunteered geographic information[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1653-1668.
[1] GOODCHILD M F. Citizens as sensors:the world of volunteered geography[J]. GeoJournal, 2007, 69(4):211-221. [2] 单杰,秦昆,黄长青,等.众源地理数据处理与分析方法探讨[J].武汉大学学报(信息科学版), 2014, 39(4):390-396. SHAN Jie, QIN Kun, HUANG Changqing, et al. Methods of crowd sourcing geographic data processing and analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4):390-396. [3] GOODCHILD M F, LI Linna. Assuring the quality of volunteered geographic information[J]. Spatial Statistics, 2012, 1:110-120. [4] 周晓光,赵肄江,李光强,等.顾及信誉的众源时空数据模型[J].武汉大学学报(信息科学版), 2018, 43(1):10-16. ZHOU Xiaoguang, ZHAO Yijiang, LI Guangqiang, et al. Crowdsourcing spatio-temporal data model considering reputation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1):10-16. [5] WALTER C. Future trends in geospatial information management:the five to ten year vision[R]. 3rd ed. New York:UN-GGIM, 2020:82. [6] CROSSLAND M D, WYNNE B E, PERKINS W C. Spatial decision support systems:an overview of technology and a test of efficacy[J]. Decision Support Systems, 1995, 14(3):219-235. [7] 严滢伟,马大伟,范红超.自发地理信息在灾后恢复监测中的应用研究框架[J].热带地理, 2020, 40(2):184-193. YAN Yingwei, MA Dawei, FAN Hongchao. A research framework for the application of volunteered geographic information in post-disaster recovery monitoring[J]. Tropical Geography, 2020, 40(2):184-193. [8] YAN Yingwei, FENG C C, HUANG Wei, et al. Volunteered geographic information research in the first decade:a narrative review of selected journal articles in GIScience[J]. International Journal of Geographical Information Science, 2020, 34(9):1765-1791. [9] SCHMIDT F, DRÖGE-ROTHAAR A, RIENOW A. Development of a Web GIS for small-scale detection and analysis of COVID-19(SARS-CoV-2) cases based on volunteered geographic information for the city of Cologne, Germany, in July/August 2020[J]. International Journal of Health Geographics, 2021, 20(1):40. [10] WANG Zhiyong, NOVACK T, YAN Yingwei, et al. Quiet route planning for pedestrians in traffic noise polluted environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12):7573-7584. [11] BALLATORE A, JOKAR ARSANJANI J. Placing Wikimapia:an exploratory analysis[J]. International Journal of Geographical Information Science, 2019, 33(8):1633-1650. [12] 尹健,李光强,职露,等.自发地理信息研究综述[J].计算机应用研究, 2016, 33(5):1281-1284. YIN Jian, LI Guangqiang, ZHI Lu, et al. Review of volunteered geographic information[J]. Application Research of Computers, 2016, 33(5):1281-1284. [13] WU Hao, LIN Anai, CLARKE K C, et al. A comprehensive quality assessment framework for linear features from volunteered geographic information[J]. International Journal of Geographical Information Science, 2021, 35(9):1826-1847. [14] FONTE C C, ANTONIOU V, BASTIN L, et al. Assessing VGI data quality[M]//FOODY G, SEE L, FRITZ S, et al. Mapping and the Citizen Sensor. London:Ubiquity Press, 2017:137-163. [15] HONARPARVAR S, MALEK M R, SAEEDI S, et al. Towards development of a real-time point feature quality assessment method for volunteered geographic information using the internet of things[J]. ISPRS International Journal of Geo-Information, 2021, 10(3):151. [16] GIRRES J F, TOUYA G. Quality assessment of the French OpenStreetMap dataset[J]. Transactions in GIS, 2010, 14(4):435-459. [17] HAKLAY M. How good is volunteered geographical information?A comparative study of openstreetmap and ordnance survey datasets[J]. Environment and Planning B:Planning and Design, 2010, 37(4):682-703. [18] ZIELSTRA D, ZIPF A. A comparative study of proprietary geodata and volunteered geographic information for Germany[C]//Proceedings of the 13th AGILE International Conference on Geographic Information Science. Guimarães, Protugal:[s.n.], 2010:1-15. [19] FORGHANI M, DELAVAR M R. A quality study of the OpenStreetMap dataset for Tehran[J]. ISPRS International Journal of Geo-Information, 2014, 3(2):750-763. [20] ZHANG Liming, PFOSER D. Using OpenStreetMap point-of-interest data to model urban change-A feasibility study[J]. PLoS One, 2019, 14(2):e0212606. [21] BALDUCCI F. Is OpenStreetMap a good source of information for cultural statistics?The case of Italian museums[J]. Environment and Planning B:Urban Analytics and City Science, 2021, 48(3):503-520. [22] HELBICH M, AMELUNXEN C, NEIS P, et al. Comparative spatial analysis of positional accuracy of OpenStreetMap and proprietary Geodata[C]//Proceedings of 2012 GI_Forum 2012:Geovizualisation, Society and Learning. Salzburg, Austria:Wichmann/VDE Verlag, 2012:24-33. [23] CHEHREGHAN A, ABBASPOUR R A. An evaluation of data completeness of VGI through geometric similarity assessment[J]. International Journal of Image and Data Fusion, 2018, 9(4):319-337. [24] ZHANG Hongyu, MALCZEWSKI J. Accuracy evaluation of the Canadian OpenStreetMap road networks[J]. International Journal of Geospatial and Environmental Research, 2018, 5(2):1. [25] CIEPȽUCH B, JACOB R, MOONEY P, et al. Comparison of the accuracy of OpenStreetMap for Ireland with Google maps and Bing maps[C]//Proceedings of the 9th International Symposium on Spatial Accuracy Assessment in Natural Resuorces and Enviromental Sciences. Leicester, UK:University of Leicester, 2010:337. [26] 罗路长,刘波,刘雪朝. OpenStreetMap路网数据质量评价及应用分析[J].江西科学, 2017, 35(1):151-157. LUO Luchang, LIU Bo, LIU Xuechao. Data quality assessment and application analysis for OpenStreetMap road network[J]. Jiangxi Science, 2017, 35(1):151-157. [27] JUHÁSZ L, HOCHMAIR H H. User contribution patterns and completeness evaluation of Mapillary, a crowdsourced street level photo service[J]. Transactions in GIS, 2016, 20(6):925-947. [28] HECHT R, KUNZE C, HAHMANN S. Measuring completeness of building footprints in OpenStreetMap over space and time[J]. ISPRS International Journal of Geo-Information, 2013, 2(4):1066-1091. [29] FAN Hongchao, ZIPF A, FU Qing, et al. Quality assessment for building footprints data on OpenStreetMap[J]. International Journal of Geographical Information Science, 2014, 28(4):700-719. [30] BALLATORE A, ZIPF A. A conceptual quality framework for volunteered geographic information[C]//Proceedings of the 12th International Conference on Spatial Information Theory. Santafe New mexico, USA:Springer, 2015:89-107. [31] 万义良.空间数据质量检查与评估理论研究[D].武汉:武汉大学, 2015. WAN Yiliang. Research on the theory for spatial data quality inspection and assessment[D]. Wuhan:Wuhan University, 2015. [32] MOONEY P, CORCORAN P, WINSTANLEY A C. Towards quality metrics for OpenStreetMap[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. San Jose, CA, USA:ACM, 2010:514-517. [33] 王明,李清泉,胡庆武,等.面向众源开放街道地图空间数据的质量评价方法[J].武汉大学学报(信息科学版), 2013, 38(12):1490-1494. WANG Ming, LI Qingquan, HU Qingwu, et al. Quality analysis on crowd sourcing Geographic data with open street map data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12):1490-1494. [34] SEHRA S S, SINGH J, RAI H S. Assessing OpenStreetMap data using intrinsic quality indicators:an extension to the QGIS processing toolbox[J]. Future Internet, 2017, 9(2):15. [35] ZHOU Qi. Exploring the relationship between density and completeness of urban building data in OpenStreetMap for quality estimation[J]. International Journal of Geographical Information Science, 2018, 32(2):257-281. [36] KASHIAN A, RAJABIFARD A, RICHTER K F, et al. Automatic analysis of positional plausibility for points of interest in OpenStreetMap using coexistence patterns[J]. International Journal of Geographical Information Science, 2019, 33(7):1420-1443. [37] SEVERINSEN J, DE ROISTE M, REITSMA F, et al. VGTrust:measuring trust for volunteered geographic information[J]. International Journal of Geographical Information Science, 2019, 33(8):1683-1701. [38] LAWRENCE H, ROBERTSON C, FEICK R, et al. The Spatial-comprehensiveness (S-COM) index:identifying optimal spatial extents in volunteered geographic information point datasets[J]. ISPRS International Journal of Geo-Information, 2020, 9(9):497. [39] MOHAMMADI N, SEDAGHAT A. A framework for classification of volunteered geographic data based on user's need[J]. Geocarto International, 2021, 36(11):1276-1291. [40] YEBOAH G, PORTO DE ALBUQUERQUE J, TROILO R, et al. Analysis of OpenStreetMap data quality at different stages of a participatory mapping process:evidence from slums in Africa and Asia[J]. ISPRS International Journal of Geo-Information, 2021, 10(4):265. [41] ZACHAROPOULOU D, SKOPELITI A, NAKOS B. Assessment and visualization of OSM consistency for European cities[J]. ISPRS International Journal of Geo-Information, 2021, 10(6):361. [42] KEßLER C, DE GROOT R T A. Trust as a proxy measure for the quality of volunteered geographic information in the case of OpenStreetMap[M]//VANDENBROUCKE D, BUCHER B, CROMPVOETS J. Geographic Information Science at the Heart of Europe. Cham:Springer, 2013:21-37. [43] 赵肄江,周晓光.地理信息志愿者信誉度评估的版本相似度模型——以面目标为例[J].测绘学报, 2015, 44(5):578-584, 589. DOI:10.11947/j.AGCS.2015.20140065. ZHAO Yijiang, ZHOU Xiaoguang. Version similarity-based model for volunteers' reputation of volunteered geographic information:a case study of polygon[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(5):578-584, 589. DOI:10.11947/j.AGCS.2015.20140065. [44] ZHOU Xiaoguang, ZHAO Yijiang. A version-similarity based trust degree computation model for crowdsourcing geographic data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B2:327-333. [45] 马超,孙群,徐青,等.自发地理信息可信度及其评价[J].地球信息科学学报, 2016, 18(10):1305-1311. MA Chao, SUN Qun, XU Qing, et al. The credibility and evaluation of volunteered geographic information[J]. Journal of Geo-Information Science, 2016, 18(10):1305-1311. [46] MUTTAQIEN B I, OSTERMANN F O, LEMMENS R L G. Modeling aggregated expertise of user contributions to assess the credibility of OpenStreetMap features[J]. Transactions in GIS, 2018, 22(3):823-841. [47] MINGHINI M, FRASSINELLI F. OpenStreetMap history for intrinsic quality assessment:is OSM up-to-date?[J]. Open Geospatial Data, Software and Standards, 2019, 4(1):9. [48] JACOBS K T, MITCHELL S W. OpenStreetMap quality assessment using unsupervised machine learning methods[J]. Transactions in GIS, 2020, 24(5):1280-1298. [49] ALGHANIM A, JILANI M, BERTOLOTTO M, et al. Leveraging road characteristics and contributor behavior for assessing road type quality in OSM[J]. ISPRS International Journal of Geo-Information, 2021, 10(7):436. [50] ZHANG Die, GE Yong, STEIN A, et al. Ranking of VGI contributor reputation using an evaluation-based weighted pagerank[J]. Transactions in GIS, 2021, 25(3):1439-1459. [51] YEOW L W, LOW R, TAN Yuxiang, et al. Point-of-Interest (POI) data validation methods:an urban case study[J]. ISPRS International Journal of Geo-Information, 2021, 10(11):735. [52] MOCNIK F B. Benford's law and geographical information-the example of OpenStreetMap[J]. International Journal of Geographical Information Science, 2021, 35(9):1746-1772. [53] HOCHMAIR H H, ZIELSTRA D. Positional accuracy of Flickr and Panoramio images in Europe[C]//Proceedings of 2012 GI_Forum:Geovisualization, Society and Learning. Berlin, Germany:Wichmann, 2012:14-23. [54] SENARATNE H, BRÖRING A, SCHRECK T. Using reverse viewshed analysis to assess the location correctness of visually generated VGI[J]. Transactions in GIS, 2013, 17(3):369-386. [55] ZIELSTRA D, HOCHMAIR H H. Positional accuracy analysis of Flickr and Panoramio images for selected world regions[J]. Journal of Spatial Science, 2013, 58(2):251-273. [56] ANTONIOU V, SKOPELITI A, FONTE C, et al. Using OSM, geo-tagged Flickr photos and authoritative data:a quality perspective[C]//Proceedings of the 6th International Conference on Cartography and GIS. Sofia, Bulgaria:International Cartographic Association, 2016:482-492. [57] TOUYA G, ANTONIOU V, OLTEANU-RAIMOND A M, et al. Assessing crowdsourced POI quality:combining methods based on reference data, history, and spatial relations[J]. ISPRS International Journal of Geo-Information, 2017, 6(3):80. [58] BARRINGTON-LEIGH C, MILLARD-BALL A. The world's user-generated road map is more than 80% complete[J]. PLoS One, 2017, 12(8):e0180698. [59] XIE Xuejing, ZHOU Yi, XU Yongyang, et al. OpenStreetMap data quality assessment via deep learning and remote sensing imagery[J]. IEEE Access, 2019, 7:176884-176895. [60] GRÖCHENIG S, BRUNAUER R, REHRL K. Digging into the history of VGI data-sets:results from a worldwide study on OpenStreetMap mapping activity[J]. Journal of Location Based Services, 2014, 8(3):198-210. [61] NEIS P, ZIPF A. Analyzing the contributor activity of a volunteered geographic information project-the case of OpenStreetMap[J]. ISPRS International Journal of Geo-Information, 2012, 1(2):146-165. [62] BÉGIN D, DEVILLERS R, ROCHE S. Assessing Volunteered Geographic Information (VGI) quality based on contributors' mapping behaviors[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, XL-2/W1:149-154. [63] MADUBEDUBE A, COETZEE S, RAUTENBACH V. A contributor-focused intrinsic quality assessment of OpenStreetMap in Mozambique using unsupervised machine learning[J]. ISPRS International Journal of Geo-Information, 2021, 10(3):156. [64] MOONEY P, CORCORAN P. How social is OpenStreetMap?[C]//Proceedings of the 15th Association of Geographic Information Laboratories for Europe International Conference on Geographic Information Science. Avignon, France:[s.n.], 2012:24-27. [65] YANG Anran, FAN Hongchao, JING Ning. Amateur or professional:assessing the expertise of major contributors in OpenStreetMap based on contributing behaviors[J]. ISPRS International Journal of Geo-Information, 2016, 5(2):21. [66] MA Dawei, FAN Hongchao, LI Wenwen, et al. The state of Mapillary:an exploratory analysis[J]. ISPRS International Journal of Geo-Information, 2020, 9(1):10. [67] LI Linna, GOODCHILD M F, XU Bo. Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr[J]. Cartography and Geographic Information Science, 2013, 40(2):61-77. [68] ALIVAND M, HOCHMAIR H H. Spatiotemporal analysis of photo contribution patterns to Panoramio and Flickr[J]. Cartography and Geographic Information Science, 2017, 44(2):170-184. [69] 李德仁,钱新林.浅论自发地理信息的数据管理[J].武汉大学学报(信息科学版), 2010, 35(4):379-383. LI Deren, QIAN Xinlin. A brief introduction of data management for volunteered geographic information[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4):379-383. [70] 黄梦妮,周晓光,赵肄江.顾及可信度的OpenStreetMap数据清理[J].测绘与空间地理信息, 2017, 40(1):177-181. HUANG Mengni, ZHOU Xiaoguang, ZHAO Yijiang. Cleaning model of OSM data which considering the trustworthiness[J]. Geomatics&Spatial Information Technology, 2017, 40(1):177-181. [71] 马超,孙群,徐青,等.基于影像匹配的自发地理信息道路精度评价与改善[J].测绘通报, 2017,(3):22-25. DOI:10.13474/j.cnki.11-2246.2017.0076. MA Chao, SUN Qun, XU Qing, et al. Accuracy evaluation and improvement of volunteer geographic information based on image matching[J]. Bulletin of Surveying and Mapping, 2017,(3):22-25. DOI:10.13474/j.cnki.11-2246.2017.0076. [72] ZHANG Xiang, WANG Tianfu, JIAO Delin, et al. Detecting inconsistent information in crowd-sourced street networks based on parallel carriageways identification and the rule of symmetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175:386-402. [73] 张云菲.多源道路网与兴趣点的一致性整合方法[D].武汉:武汉大学, 2015. ZHANG Yunfei. Methods for congruent conflation of multisource road networks and POIS[D]. Wuhan:Wuhan University, 2015. [74] JOHNSON B A, IIZUKA K. Integrating OpenStreetMap crowdsourced data and Landsat time-series imagery for rapid land use/land cover (LULC) mapping:case study of the Laguna de Bay Area of the Philippines[J]. Applied Geography, 2016, 67:140-149. [75] 马超.自发地理信息道路数据融合处理关键技术研究[D].郑州:信息工程大学, 2017. MA Chao. Research on key technology of data fusion of volunteered information geographic road data[D]. Zhengzhou:Information Engineering University, 2017. [76] DING Linfang, XIAO Guohui, CALVANESE D, et al. Consistency assessment for open geodata integration:an ontology-based approach[J]. Geoinformatica, 2021, 25(4):733-758. [77] JEANSOULIN R. A century of French railways:the value of remote sensing and VGI in the fusion of historical data[J]. ISPRS International Journal of Geo-Information, 2021, 10(3):154. [78] LIU Lanfa, OLTEANU-RAIMOND A M, JOLIVET L, et al. A data fusion-based framework to integrate multi-source VGI in an authoritative land use database[J]. International Journal of Digital Earth, 2021, 14(4):480-509. [79] ELWOOD S, LESZCZYNSKI A. Privacy, reconsidered:new representations, data practices, and the Geoweb[J]. Geoforum, 2011, 42(1):6-15. [80] SCASSA T. Legal issues with volunteered geographic information[J]. The Canadian Geographer/Le Géographe Canadien, 2013, 57(1):1-10. [81] BLATT A J. The benefits and risks of volunteered geographic information[J]. Journal of Map&Geography Libraries, 2015, 11(1):99-104. [82] DUNKEL A, LÖCHNER M, BURGHARDT D. Privacy-aware visualization of volunteered geographic information (VGI) to analyze spatial activity:a benchmark implementa-tion[J]. ISPRS International Journal of Geo-Information, 2020, 9(10):607. [83] NEIS P, GOETZ M, ZIPF A. Towards automatic vandalism detection in OpenStreetMap[J]. ISPRS International Journal of Geo-Information, 2012, 1(3):315-332. [84] TRUONG Q T, TOUYA G, DE RUNZ C. OSMWatchman:learning how to detect vandalized contributions in OSM using a random forest classifier[J]. ISPRS International Journal of Geo-Information, 2020, 9(9):504. [85] MOBASHERI A, HUANG Haosheng, DEGROSSI L C, et al. Enrichment of OpenStreetMap data completeness with sidewalk geometries using data mining techniques[J]. Sensors, 2018, 18(2):509. [86] REHRL K, GRÖCHENIG S. A framework for data-centric analysis of mapping activity in the context of volunteered geographic information[J]. ISPRS International Journal of Geo-Information, 2016, 5(3):37. [87] LOTFIAN M, INGENSAND J, BROVELLI M A. A framework for classifying participant motivation that considers the typology of citizen science projects[J]. ISPRS International Journal of Geo-Information, 2020, 9(12):704. [88] HOLLENSTEIN L, PURVES R S. Exploring place through user-generated content:using Flickr tags to describe city cores[J]. Journal of Spatial Information Science, 2010,(1):21-48. [89] HOFFMANN E J, WERNER M, ZHU Xiaoxiang. Building instance classification using social media images[C]//Proceedings of 2019 Joint Urban Remote Sensing Event (JURSE). Vannes, France:IEEE, 2019:1-4. [90] FERSTER C, FISCHER J, MANAUGH K, et al. Using OpenStreetMap to inventory bicycle infrastructure:a comparison with open data from cities[J]. International Journal of Sustainable Transportation, 2020, 14(1):64-73. [91] FONTE C, MINGHINI M, ANTONIOU V, et al. An automated methodology for converting OSM data into a Land Use/Cover map[C]//Proceedings of the 6th International Conference on Cartography and GIS. Sofia, Bulgaria:International CartographicAssociation, 2016:462-473. [92] FONTE C C, PATRIARCA J A, MINGHINI M, et al. Using OpenStreetMap to create land use and land cover maps:development of an application[M]//Information Resources Management Association. Geospatial Intelligence:Concepts, Methodologies, Tools, and Applications. Pennsylvania:IGI Global, 2019:1100-1123. [93] SCHULTZ M, VOSS J, AUER M, et al. Open land cover from OpenStreetMap and remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 63:206-213. [94] LUDWIG C, HECHT R, LAUTENBACH S, et al. Mapping public urban green spaces based on OpenStreetMap and Sentinel-2 imagery using belief functions[J]. ISPRS International Journal of Geo-Information, 2021, 10(4):251. [95] FORGET Y, SHIMONI M, GILBERT M, et al. Mapping 20 years of urban expansion in 45 urban areas of Sub-Saharan Africa[J]. Remote Sensing, 2021, 13(3):525. [96] 宋宏利,张晓楠.基于VGI的土地覆被遥感产品精度验证[J].河北工程大学学报(自然科学版), 2016, 33(4):98-102. SONG Hongli, ZHANG Xiaonan. Analysis of land cover category accuracy based on volunteered geographic information[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2016, 33(4):98-102. [97] ZHU Yi, DENG Xueqing, NEWSAM S. Fine-grained land use classification at the city scale using ground-level images[J]. IEEE Transactions on Multimedia, 2019, 21(7):1825-1838. [98] TERROSO-SAENZ F, MUÑOZ A. Land use discovery based on volunteer geographic information classification[J]. Expert Systems with Applications, 2020, 140:112892. [99] OVER M, SCHILLING A, NEUBAUER S, et al. Generating web-based 3D city models from OpenStreetMap:the current situation in Germany[J]. Computers, Environment and Urban Systems, 2010, 34(6):496-507. [100] GOETZ M, ZIPF A. Extending OpenStreetMap to indoor environments:bringing volunteered geographic information to the next level[J]. Urban and Regional Data Management:UDMS Annual 2011, 9:51-62. [101] GOETZ M. Towards generating highly detailed 3D CityGML models from OpenStreetMap[J]. International Journal of Geographical Information Science, 2013, 27(5):845-865. [102] KLONNER C, BARRON C, NEIS P, et al. Updating digital elevation models via change detection and fusion of human and remote sensor data in urban environments[J]. International Journal of Digital Earth, 2015, 8(2):153-171. [103] BAGHERI H, SCHMITT M, ZHU Xiaoxiang. Fusion of multi-sensor-derived heights and OSM-derived building footprints for urban 3D reconstruction[J]. ISPRS International Journal of Geo-Information, 2019, 8(4):193. [104] FAN Hongchao, KONG Gefei, ZHANG Chaoquan. An interactive platform for low-cost 3D building modeling from VGI data using convolutional neural network[J]. Big Earth Data, 2021, 5(1):49-65. [105] POSER K, DRANSCH D. Volunteered geographic information for disaster management with application to rapid flood damage estimation[J]. Geomatica, 2010, 64(1):89-98. [106] 张仁军,沈林.应用自发地理信息的灾害预警技术[J].重庆理工大学学报(自然科学), 2013, 27(10):80-83, 116. ZHANG Renjun, SHEN Lin. The early warning system of disasters based on volunteered geographic information[J]. Journal of Chongqing Institute of Technology (National Science), 2013, 27(10):80-83, 116. [107] CROOKS A T, WISE S. GIS and agent-based models for humanitarian assistance[J]. Computers, Environment and Urban Systems, 2013, 41:100-111. [108] SCHELHORN S J, HERFORT B, LEINER R, et al. Identifying elements at risk from OpenStreetMap:the case of flooding[C]//Proceedings of the 11th International ISCRAM Conference. Philadelphia, PA, USA:[s.n.], 2014. [109] SCHUMANN Ⅲ R L. Ground truthing spatial disaster recovery metrics with participatory mapping in Post-Katrina Mississippi[J]. Applied Geography, 2018, 99:63-76. [110] LIN Anqi, WU Hao, LIANG Guanghua, et al. A big data-driven dynamic estimation model of relief supplies demand in urban flood disaster[J]. International Journal of Disaster Risk Reduction, 2020, 49:101682. [111] VAHIDNIA M H, HOSSEINALI F, SHAFIEI M. Crowdsource mapping of target buildings in hazard:the utilization of smartphone technologies and geographic services[J]. Applied Geomatics, 2020, 12(1):3-14. [112] 王守成,郭风华,傅学庆,等.基于自发地理信息的旅游地景观关注度研究——以九寨沟为例[J].旅游学刊, 2014, 29(2):84-92. WANG Shoucheng, GUO Fenghua, FU Xueqing, et al. A study of the spatial patterns of tourist sightseeing based on volunteered geographic information:the case of the Jiuzhai Valley[J]. Tourism Tribune, 2014, 29(2):84-92. [113] ALIVAND M, HOCHMAIR H H. Choice set generation for modeling scenic route choice behavior with geographic information systems[J]. Transportation Research Record:Journal of the Transportation Research Board, 2015, 2495(1):101-111. [114] GONZÁLEZ-RAMIRO A, GONÇALVES G, SÁNCHEZ-RÍOS A, et al. Using a VGI and GIS-based multicriteria approach for assessing the potential of rural tourism in Extremadura (Spain)[J]. Sustainability, 2016, 8(11):1144. [115] YAN Yingwei, ECKLE M, KUO C L, et al. Monitoring and assessing post-disaster tourism recovery using Geotagged social media data[J]. ISPRS International Journal of Geo-Information, 2017, 6(5):144. [116] 陈旭.基于众源地理数据的热门旅游路线推荐算法及实证研究[D].上海:上海师范大学, 2018. CHEN Xu. Popular tourist route recommendation algorithm based on crowd-sourced geographical data and empirical research[D]. Shanghai:Shanghai Normal University, 2018. [117] DEVKOTA B, MIYAZAKI H, WITAYANGKURN A, et al. Using volunteered geographic information and nighttime light remote sensing data to identify tourism areas of interest[J]. Sustainability, 2019, 11(17):4718. |
[1] | 邵凯, 张厚喆, 秦显平, 黄志勇, 易彬, 谷德峰. 分布式InSAR编队卫星精密绝对和相对轨道确定[J]. 测绘学报, 2021, 50(5): 580-588. |
[2] | 马超, 孙群, 陈换新, 徐青, 杨辉. 志愿者地理信息中天桥的自动识别方法[J]. 测绘学报, 2017, 46(2): 246-252. |
[3] | 杨敏,艾廷华,刘鹏程,成晓强. 等高线河流数据集成中的匹配及一致性改正[J]. 测绘学报, 2012, 41(1): 152-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||