[1] SAVE H, BETTADPUR S, BYRON D T. Reducing errors in the GRACE gravity solutions using regularization[J]. Journal of Geodesy, 2012, 86(9):695-711. DOI:10.1007/s00190-012-0548-5. [2] 徐新禹,李建成,王正涛. Tikhonov正则化方法在GOCE重力场求解中的模拟研究[J].测绘学报,2010,39(5):465-470. XU Xinyu, LI Jiancheng, WANG Zhengtao. The simulation research on the Tikhonov regularization applied in gravity field determination of GOCE satellite mission[J]. Acta Geodaetica et Cartographica Sinica, 2010,39(5):465-470. [3] MU D, YAN H, FENG W,et al. GRACE leakage error correction with regularization technique:case studies in Greenland and Antarctica[J]. Geophysical Journal International 2017,208(3):1775-1786.DOI:10.1093/gji/ggw494. [4] WANG L Y, ZHAO X, GAO H. A method for determining the regularization parameter and the relative weight ratio of the seismic slip distribution with multi-source data[J]. Journal of Geodynamics. 2018. 118:1-10. DOI:10.1016/j.jog.2018.04.005. [5] XU C, DENG C F. Solving multicollinearity in dam regression model using TSVD[J]. Geo-Spatial Information Science, 2011,14(3):230-234. DOI:10.1007/s11806-011-0527-7. [6] FU Haiqiang, ZHU Jianjun, WANG Changcheng, et al. A wavelet decomposition and polynomial fitting-based method for the estimation of time-varying residual motion error in airborne interferometric SAR[J]. IEEE Transaction on Geoscience and Remote Sensing. 2018, 56(1):49-59. DOI:10.1109/TGRS.2017.2727076. [7] FU Haiqiang, ZHU Jianjun, WANG Changcheng, et al. Underlying topography extraction over forest areas from multi-baseline PolInSAR data[J]. Journal of Geodesy. 2018, 92(7):727-741. DOI:10.1007/s00190-017-1091-1. [8] 朱建军,田玉淼,陶肖静.带准则参数的平差准则及其统一与解算[J].测绘学报, 2012,41(1):8-13. ZHU Jianjun, TIAN Yumiao, TAO Xiaojing. United expression and solution of adjustment criteria with parameters[J]. Acta Geodaetica et Cartographica Sinica, 2012,41(1):8-13. [9] 欧吉坤.测量平差中不适定问题解的统一表达与选权拟合法[J].测绘学报, 2010, 39(5):283-288. OU Jikun. Uniform expression of solutions of ill posed problems in surveying adjustment and the fitting method by selection of the parameter weights[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5):283-288. [10] TIKHONOV A N, ARSENIN V Y. Solutions of ill-posed problems[M]. New York:Wiley, 1977. [11] 徐天河,杨元喜.均方误差意义下正则化解优于最小二乘解的条件[J].武汉大学学报(信息科学版), 2004,29(3);223-226. XU Tianhe, YANG Yuanxi. Condition of regularization solution superior to LS solution based on MSE principle[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3):223-226. [12] TIKHONOV A N. Regularization of ill-posed problems[J]. Doklady Akademii Nauk SSSR, 1963, 151(1):49-52. [13] HOERL A E, KENNARD R W. Ridge regression:biased estimation for non-orthogonal problems[J]. Technometrics, 1970, 12:55-67. [14] HOERL A E, KENNARD R W, Ridge regression:application to non-orthogonal problems[J]. Technometrics. 1970, 12:69-82. [15] HANSEN P C. The truncated SVD as a method for regularization[J].BIT numerical mathematics,1987, 27:534-553. DOI:10.1007/BF01937276. [16] SHEN Yunzhong, XU Peiliang, LI Bofeng. Bias-corrected regularized solution to inverse ill-posed models[J]. Journal of Geodesy, 2012,86:597-608. DOI:10.1007/s00190-012-0542-y. [17] REICHEL L, RODRIGUEZ G. Old and new parameter choice rules for discrete ill-posed problems[J]. Numerical Algorithms, 2013, 63,(1):65-87. DOI:10.1007/s11075-012-9612-8. [18] BOUHAMIDI A, JBILOU K, REICHEL L, et al. An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure[J]. Linear Algebra and its Applications, 2011,434(7):1677-1688.DOI:10.1016/j.laa.2010.06.001. [19] LIN Dongfang, ZHU Jianjun, FU Haiqiang, et al. A TSVD-based method for forest height inversion from single-baseline PolInSAR data[J]. Applied Sciences. 2017, 7(5):435. DOI:10.3390/app7050435. [20] HANSEN P C. Analysis of discrete ill-posed problems by means of the L-curve[J]. SIAM Review, 1992, 34(4):561-580. DOI:10.1137/1034115. [21] HANSEN P C. The use of the L-curve in the regularization of discrete ill-posed problems[J]. SIAM Journal on Scientific Computing,1993, 14(6):1487-1503. [22] XU P L. Truncated SVD methods for discrete linear ill-posed problems[J]. Geophysical Journal International, 1998, 135:505-514. DOI:10.1046/j.1365-246X.1998.00652.x. [23] 崔希璋,於倧俦,陶本藻,等.广义测量平差[M].武汉:武汉大学出版社,2009. CUI Xizhang, YU Zongchou, TAO Benzao, et al. Generalized surveying adjustment[M]. Wuhan:Wuhan University Press,2009. [24] SONG Yingchun, XIA Yuguo, XIE Xuemei. Adjustment model and algorithm based on ellipsoid uncertainty[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3):59-66. DOI:10.11947/j.AGCS.2019.20170611. [25] 林东方,朱建军,付海强,等.均方误差意义下的正则化参数二次优化方法[J].测绘学报,2020,49(4):443-451. DOI:10.11947/j.AGCS.2020.20190148. LIN Dongfang, ZHU Jianjun, FU Haiqiang, et al. Optimization of regularization parameter based on minimum MSE[J]. Acta Geodaetica et Cartographica Sinica, 2020,49(4):443-451. DOI:10.11947/j.AGCS.2020.20190148. [26] 王振杰,欧吉坤.用L曲线法确定岭估计中的岭参数[J].武汉大学学报:信息科学版, 2004,29(3):235-238. WANG Zhenjie, OU Jikun. Determining the ridge parameter in a ridge estimation using L-curve method[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3):235-238. [27] LIN Dongfang, ZHU Jianjun, LI Chaokui, et al. Bias reduction method for parameter inversion of ill-posed surveying model[J]. Journal of Surveying Engineering., 2020, 146(3):04020011. DOI:10.1061/(ASCE) SU.1943-5428.0000321. [28] ZHU Jianjun, XIE Qinghua, ZUO Tingying, et al. Complex least squares adjustment to improve tree height inversion problem in PolInSAR[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1):1-8. DOI:10.11947/j.JGGS.2019.0101. [29] 付海强,朱建军,汪长城,等.极化干涉SAR植被高反演复数最小二乘平差法[J].测绘学报,2014,43(10):1061-1067. DOI:10.13485/j.cnki.11-2089.2014.0170. FU Haiqiang, ZHU Jianjun, WANG Changcheng, et al. Polarimetric SAR interferometry vegetation height inversion model of complex least squares adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(10):1061-1067. DOI:10.13485/j.cnki.11-2089.2014.0170. |