[1] 李德仁, 袁修孝. 误差处理与可靠性理论[M]. 2版. 武汉: 武汉大学出版社, 2012. LI Deren, YUAN Xiuxiao. Error processing and reliability theory[M]. 2nd ed.Wuhan: Wuhan University Press, 2012. [2] 杨元喜. 自适应抗差最小二乘估计[J]. 测绘学报, 1996, 25(3): 206-211. YANG Yuanxi. Adaptively robust least squares estimation[J]. Acta Geodaetica et Cartographica Sinica, 1996, 25(3): 206-211. [3] 杨元喜, 宋力杰, 徐天河. 大地测量相关观测抗差估计理论[J]. 测绘学报, 2002, 31(2): 95-99. YANG Yuanxi, SONG Lijie, XU Tianhe. Robust parameter estimation for geodetic correlated observations[J]. Acta Geodaetica et Cartographic Sinica, 2002, 31(2): 95-99. [4] LI Jiayuan, HU Qingwu, AI Mingyao. Robust geometric model estimation based on scaled Welsch q-norm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5908-5921. [5] 李忠美, 边少锋, 瞿勇. 多像空间前方交会的抗差总体最小二乘估计[J]. 测绘学报, 2017, 46(5): 593-604. DOI: 10.11947/j.AGCS.2017.20160081. LI Zhongmei, BIAN Shaofeng, QU Yong. Robust total least squares estimation of space intersection appropriate for multi-images[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5): 593-604. DOI: 10.11947/j.AGCS.2017.20160081. [6] LI Jiayuan, HU Qingwu, AI Mingyao. Robust feature matching for remote sensing image registration based on Lq-estimator[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1989-1993. [7] 余岸竹, 姜挺, 郭文月, 等. 总体最小二乘用于线阵卫星遥感影像光束法平差解算[J]. 测绘学报, 2016, 45(4): 442-449,457.DOI: 10.11947/j.AGCS.2016.20150354. YU Anzhu, JIANG Ting, GUO Wenyue, et al. Bundle adjustment for satellite linear array images based on total least squares[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4): 442-449, 457.DOI: 10.11947/j.AGCS.2016.20150354. [8] 王任享, 王建荣, 胡莘. EFP全三线交会光束法平差[J]. 武汉大学学报(信息科学版), 2014, 39(7): 757-761. WANG Renxiang, WANG Jianrong, HU Xin. The EFP bundle adjustment of all three line intersection[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 757-761. [9] LI Jiayuan. A practical O(N2) outlier removal method for correspondence-based point cloud registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 3926-3939. [10] LI Jiayuan, HU Qingwu, AI Mingyao. GESAC: robust graph enhanced sample consensus for point cloud registration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 363-374. [11] MUR-ARTAL R, MONTIEL J M M, TARDÓS J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163. [12] HUBER P J. Robust statistics[M]. NewYork:Wiley, 1981. [13] MARONNA R A, DOUGLAS MARTIN R, YOHAI V J. Robust statistics[M]. New York: Wiley, 2006. [14] ROUSSEEUW P J, LEROY A M. Robust regression and outlier detection[M].New York: Wiley, 2005. [15] 李德仁. 利用选择权迭代法进行粗差定位[J]. 武汉测绘学院学报, 1984,9(1): 46-68. LI Deren. Gross error location by means of the iteration method with variable weights[J]. Geomatics and Information Science of Wuhan University, 1984,9(1): 46-68. [16] 龚循强, 李志林. 稳健加权总体最小二乘法[J]. 测绘学报, 2014, 43(9): 888-894,901. GONG Xunqiang, LI Zhilin. A robust weighted total least squares method[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9): 888-894, 901. [17] 王彬, 李建成, 高井祥, 等. 抗差加权整体最小二乘模型的牛顿-高斯算法[J]. 测绘学报, 2015, 44(6): 602-608. DOI: 10.11947/j.AGCS.2015.20130704. WANG Bin, LI Jiancheng, GAO Jingxiang, et al. Newton-Gauss algorithm of robust weighted total least squares model[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6): 602-608.DOI: 10.11947/j.AGCS.2015.20130704. [18] 方兴, 黄李雄, 曾文宪, 等. 稳健估计的一种改进迭代算法[J]. 测绘学报, 2018, 47(10): 1301-1306.DOI: 10.11947/j.AGCS.2018.20170576. FANG Xing, HUANG Lixiong, ZENG Wenxian, et al. On an improved iterative reweighted least squares algorithm in robust estimation[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10): 1301-1306.DOI: 10.11947/j.AGCS.2018.20170576. [19] 仝海波, 张国柱. 改进M估计的抗多个粗差定位解算方法[J]. 测绘学报, 2014, 43(4): 366-371. TONG Haibo, ZHANG Guozhu. Robust positioning algorithm with modified M-estimation for multiple outliers[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(4): 366-371. [20] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395. [21] TORR P H S, ZISSERMAN A. MLESAC: a new robust estimator with application to estimating image geometry[J]. Computer Vision and Image Understanding, 2000, 78(1): 138-156. [22] CHUM O, MATAS J, KITTLER J. Locally optimized RANSAC[M]//Lecture Noteš in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003: 236-243. [23] LEBEDA K, MATAS J, CHUM O. Fixing the locally optimized RANSAC[C]//Proceedings of 2012 British Machine Vision Conference.Surrey:British Machine Vision Association, 2012. [24] BARATH D, MATAS J. Graph-cut RANSAC[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 6733-6741. [25] RAGURAM R, FRAHM J M. RECON: scale-adaptive robust estimation via residual consensus[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2012: 1299-1306. [26] RAGURAM R, CHUM O, POLLEFEYS M, et al. USAC: a universal framework for random sample consensus[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 2022-2038. [27] BARÁTH D, NOSKOVA J, IVASHECHKIN M, et al. MAGSAC, a fast, reliable and accurate robust estimator[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 1301-1309. [28] CHIN T J, SUTER D. The maximum consensus problem: recent algorithmic advances[J]. Synthesis Lectures on Computer Vision, 2017, 7(2): 1-194. [29] CHEN Haifeng. Robust regression with projection based M-estimators[C]//Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France:IEEE, 2008: 878-885. [30] MITTAL S, ANAND S, MEER P. Generalized projection-based M-estimator[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(12): 2351-2364. [31] LI Jiayuan, HU Qingwu, AI Mingyao. Robust geometric model estimation based on scaled Welsch q-norm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5908-5921. [32] BARRON J T. A general and adaptive robust loss function[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA:IEEE, 2020: 4326-4334. [33] LI J, ZHANG Y, HU Q. Robust estimation in robot vision and photogrammetry: a new model and its applications[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021(1): 137-144. [34] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [35] LI Jiayuan, HU Qingwu, AI Mingyao. RIFT: multi-modal image matching based on radiation-variation insensitive feature transform[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2019, 29: 3296-3310. [36] ZHONG Yu. Intrinsic shape signatures: a shape descriptor for 3D object recognition[C]//Proceedings of the 12th International Conference on Computer Vision Workshops, ICCV Workshops. Kyoto, Japan:IEEE, 2009: 689-696. [37] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan:IEEE, 2009: 3212-3217. [38] CHANG Xiaowen. Computation of Huber's M-estimates for a block-angular regression problem[J]. Computational Statistics &Data Analysis, 2006, 50(1): 5-20. |