[1] MORITZ H. Advanced physical geodesy[M]. Karlsruhe:Wichmann, 1980. [2] W.A. 海斯卡涅,H.莫里兹. 物理大地测量学[M]. 卢福康,胡国理,译. 北京:测绘出版社,1979. HEISKANEN W A, MORITZ H. Physical geodesy[M]. LU Fukang, HU Guoli, trans. Beijing:Surveying and Mapping Press, 1979. [3] 李建成,陈俊勇,宁津生,等.地球重力场逼近理论与中国2000似大地水准面的确定[M].武汉:武汉大学出版社,2003. LI Jiancheng, CHEN Junyong, NING Jinsheng, et al. Approximation theory of earth gravity field and determination of China 2000 quasigeoid[M]. Wuhan:Wuhan University Press,2003. [4] 冯进凯. 地球重力场中点质量核径向基函数的应用研究[D]. 郑州:信息工程大学, 2018. FENG Jinkai. Application of point-mass kernel radial basic function in gravity field[D]. Zhengzhou:Information Engineering University, 2018. [5] 马健, 魏子卿, 任红飞. 确定似大地水准面的Hotine-Helmert边值解算模型[J]. 测绘学报, 2019, 48(2):153-160. DOI:10. 11947/j.AGCS.2019.20170594. MA Jian, WEI Ziqing, REN Hongfei. Hotine-Helmert boundary-value calculation model for quasi-geoid determination[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):153-160. DOI:10. 11947/j.AGCS.2019.20170594. [6] 马健, 魏子卿, 任红飞. 低阶修正的Hotine截断核函数的频谱分析与应用[J]. 测绘学报, 2019, 48(5):537-546.DOI:10.11947/j.AGCS.2019.20170613. MA Jian, WEI Ziqing, REN Hongfei. The spectral analysis and application of low-degree modified spheroidal Hotine kernel[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5),537-546. DOI:10.11947/j.AGCS.2019.20170613. [7] 马健. Hotine-Helmert边值问题确定似大地水准面的理论与方法[D]. 郑州:信息工程大学, 2018. MA Jian. Theory and methods of the Hotine-Helmert boundary value problem for the determination of the quasi-geoid[D]. Zhengzhou:Information Engineering University, 2018. [8] 吴晓平, 李姗姗, 张传定. 扰动重力边值问题与实际数据处理的研究[J]. 武汉大学学报(信息科学版), 2003, 28(S1):73-78. WU Xiaoping, LI Shanshan, ZHANG Chuanding. Problem of the boundary value of disturbing gravity and practical data processing[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1):73-78. [9] 魏子卿. 以地心参考椭球面为边界面的第二大地边值问题引论[J]. 测绘科学与工程, 2015(1):1-6. WEI Ziqing. Introduction to the second geodetic boundary- value problem with the geocentric reference ellipsoidal surface as the boundary[J]. Geomatic Science and Engineering, 2015(1):1-6. [10] ISIK M S, EROL B, EROL S, et al. High-resolution geoid modeling using least squares modification of Stokes and Hotine formulas in Colorado[J]. Journal of Geodesy, 2021, 95(5):49. [11] SABRI L M, SUDARSONO B, PAHLEVI A. Geoid of South East Sulawesi from airborne gravity using Hotine approach[J]. IOP Conference Series:Earth and Environmental Science, 2021, 731(1):012014. [12] SABRI L M, HELIANI L S, SUNANTYO T A, et al. Geoid determination with Hotine's integral based on terrestrial gravity data in Semarang city[J]. Journal of Physics:Conference Series, 2019, 1127:012047. [13] SABRI L M, SUDARSONO B, DWI INDRIANA R. Determination of vertical deflection based on terestrial gravity disturbance data (a case study in Semarang city)[C]//Proceedings of the 1st Internation Conference on Geodesy, Geomatics and band Administration. Semarang, Indonesia:KnE Engineering, 2019:106-114. [14] 李斐, 岳建利, 张利明. 应用GPS/重力数据确定(似)大地水准面[J]. 地球物理学报, 2005, 48(2):294-298. LI Fei, YUE Jianli, ZHANG Liming. Determination of geoid by GPS/gravity data[J]. Chinese Journal of Geophysics, 2005, 48(2):294-298. [15] FEATHERSTONE W E. Deterministic, stochastic, hybrid and band-limited modifications of Hotine's integral[J]. Journal of Geodesy, 2013, 87(5):487-500. [16] 田家磊, 李新星, 张学东, 等. 利用Hotine积分与扰动重力数据确定区域大地水准面[J]. 测绘科学技术学报, 2018, 35(3):231-234. TIAN Jialei, LI Xinxing, ZHANG Xuedong, et al. Determination of regional geoid by hotine integral and gravity disturbance data[J]. Journal of Geomatics Science and Technology, 2018, 35(3):231-234. [17] 田家磊, 李新星, 刘晓刚, 等. 以扰动重力为边值条件确定外部扰动重力场[J]. 中国惯性技术学报, 2018, 26(6):773-777. TIAN Jialei, LI Xinxing, LIU Xiaogang, et al. Determining the external disturbing gravity field by applying gravity disturbance as boundary value condition[J]. Journal of Chinese Inertial Technology, 2018, 26(6):773-777. [18] 黄谟涛, 刘敏, 邓凯亮, 等. 海域流动点外部扰动引力无奇异计算模型[J]. 地球物理学报, 2019, 62(7):2394-2404. HUANG Motao, LIU Min, DENG Kailiang, et al. A nonsingular model for computing the external gravity field at a mobile point in a sea area[J]. Chinese Journal of Geophysics, 2019, 62(7):2394-2404. [19] 王兴涛, 夏哲仁, 石磐, 等. 航空重力测量数据向下延拓方法比较[J]. 地球物理学报, 2004, 47(6):1017-1022. WANG Xingtao, XIA Zheren, SHI Pan, et al. A comparison of different downward continuation methods for airborne gravity data[J]. Chinese Journal of Geophysics, 2004, 47(6):1017-1022. [20] ZHAO D, LI S, WANG Q, et al. The modified integral method for the determination of gravity disturbance near the Earth's surface[J]. Journal of Geodetic Science, 2019, 9(1):65-70. [21] 李新星, 王昊. 基于网格数据的Poisson积分离散求和改进方法[J]. 大地测量与地球动力学, 2013, 33(2):128-131. LI Xinxing, WANG Hao. An improved method of Poisson integration for discrete grid data[J]. Journal of Geodesy and Geodynamics, 2013, 33(2):128-131. [22] 田家磊, 吴晓平, 李姗姗. 应用格林积分直接以地面边值确定外部扰动重力场[J]. 测绘学报, 2015, 44(11):1189-1195, 1284. DOI:10.11947/j.AGCS.2015.20140516. TIAN Jialei, WU Xiaoping, LI Shanshan. A direct approach to determine the external disturbing gravity field by applying green integral with the ground boundary value[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11):1189-1195, 1284. DOI:10.11947/j.AGCS.2015.20140516. |