[1] 刘东升, 廖通逵, 孙焕英, 等. 中国遥感软件研制进展与发展方向: 以像素专家PIE为例[J]. 中国图象图形学报, 2021, 26(5): 1169-1178. LIU Dongsheng, LIAO Tongkui, SUN Huanying, et al. Research progress and development direction of Chinese remote sensing software: taking PIE as an example[J]. Journal of Image and Graphics, 2021, 26(5): 1169-1178. [2] HUANG D, WANG C. Optimal multi-level thresholding using a two-stage Otsu optimization approach[J]. Pattern Recognition Letters, 2009, 30(3): 275-284. [3] AL-AMRI M, KALYANKAR N V, KHAMITKAR S D . Image segmentation by using edge detection[J]. International Journal of Advanced Trends in Computer Science and Engineering, 2010, 2(3):804-807. [4] NAZIF A M, LEVINE M D. Low level image segmentation: an expert system[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(5): 555-577. [5] SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. [6] SATHYA P, MALATHI L. Classification and segmentation in satellite imagery using back propagation algorithm of ANN and K-means algorithm[J]. International Journal of Machine Learning and Computing, 2011, 1(4): 422-426. [7] LIZARAZO I. SVM-based segmentation and classification of remotely sensed data[J]. International Journal of Remote Sensing, 2008, 29(24): 7277-7283. [8] BELGIU M, DRAGUT L. Random forest in remote sensing: a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31. [9] ZHU X, TUIA D, MOU L, et al. Deep learning in remote sensing: a comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 8-36. [10] LI Shutao, SONG Weiwei, FANG Leyuan, et al. Deep learning for hyperspectral image classification: an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6690-6709. [11] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [12] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241. [13] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [14] CHEN L, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of 2018 European Conference on Computer Vision.Munich, Germany: Springer, 2018:801-818. [15] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018, 40(4):834-848. [16] JIAO Licheng, LIANG Miaomiao, CHEN Huan, et al. Deep fully convolutional network-based spatial distribution prediction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5585-5599. [17] 李道纪, 郭海涛, 卢俊, 等. 遥感影像地物分类多注意力融和U型网络法[J]. 测绘学报, 2020, 49(8): 1051-1064. DOI: 10.11947/j.AGCS.2020.20190407. LI Daoji, GUO Haitao, LU Jun, et al. A remote sensing image classification procedure based on multilevel attention fusion U-Net[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8): 1051-1064.DOI: 10.11947/j.AGCS.2020.20190407. [18] 左宗成, 张文, 张东映. 融合可变形卷积与条件随机场的遥感影像语义分割方法[J]. 测绘学报, 2019, 48(6): 718-726.DOI: 10.11947/j.AGCS.2019.20170740. ZUO Zongcheng, ZHANG Wen, ZHANG Dongying. A remote sensing image semantic segmentation method by combining deformable convolution with conditional random fields[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6): 718-726.DOI: 10.11947/j.AGCS.2019.20170740. [19] NIU Zijia, LIU Wen, ZHAO Jingyi, et al. DeepLab-based spatial feature extraction for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 251-255. [20] DU Shouji, DU Shihong, LIU Bo, et al. Incorporating DeepLabv3+ and object-based image analysis for semantic segmentation of very high resolution remote sensing images[J]. International Journal of Digital Earth, 2021, 14(3): 357-378. [21] 王忠武, 王志盼, 尤淑撑, 等. Landsat影像冰川提取的上下文感知语义分割网络法[J]. 测绘学报, 2020, 49(12): 1575-1582.DOI: 10.11947/j.AGCS.2020.20190313. WANG Zhongwu, WANG Zhipan, YOU Shucheng, et al. Landsat image glacier extraction based on context semantic segmentation network[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12): 1575-1582.DOI: 10.11947/j.AGCS.2020.20190313. [22] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016: 770-778. [23] LI Xiangtai,Li Xia, Zhang Li,et al. Improving semantic segmentation via decoupled body and edge supervision[C]//Proceedings of 2020 European Conference on Computer Vision. Glasgow, UK: Springer, 2020:435-452. [24] ZHU Xizhou, XIONG Yuwen, DAI Jifeng, et al. Deep feature flow for video recognition[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 4141-4150. [25] DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet: learning optical flow with convolutional networks[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2016: 2758-2766. [26] JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[C]//Proceedings of 2015 IEEE Conference on Neural Information. Montreal, Quebec, Canada: Morgan Kaufmann, 2015: 2017-2025. [27] POHLEN T, HERMANS A, MATHIAS M, et al. Full-resolution residual networks for semantic segmentation in street scenes[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu, HI, USA:IEEE, 2017: 3309-3318. [28] BOKHOVKIN A, BURNAEV E. Boundary loss for remote sensing imagery semantic segmentation[C]//Proceedings of 2019 International Symposium on Neural Networks.Moscow, Russia: Springer, 2019: 388-401. |