[1] |
OIKONOMOU C, TYMVIOS F, PIKRIDAS C, et al. Tropospheric delay performance for GNSS integrated water vapor estimation by using GPT2w model, ECMWF's IFS operational model and in situ meteorological data[J]. Advances in Geosciences, 2018, 45:363-375.
|
[2] |
KATSOUGIANNOPOULOS S, PIKRIDAS C, ZINAS N, et al. Analysis of precipitable water estimates using permanent GPS station data during the Athens heavy rainfall on February 22th 2013[M]//RIZOS C, WILLIS P, eds. International Association of Geodesy Symposia. Cham: Springer International Publishing, 2015: 407-414.
|
[3] |
周康辉. 基于深度卷积神经网络的强对流天气预报方法研究[D]. 北京: 中国气象科学研究院, 2021.
|
|
ZHOU Kanghui. Research on severe convective weather forecast method based on deep convolution neural network[D]. Beijing: Chinese Academy of Meteorological Sciences, 2021.
|
[4] |
BENEVIDES P, CATALAO J, MIRANDA P M A. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall[J]. Natural Hazards and Earth System Sciences, 2015, 15(12):2605-2616.
|
[5] |
RAHIMI Z, MOHD SHAFRI H Z, NORMAN M. A GNSS-based weather forecasting approach using nonlinear auto regressive approach with exogenous input (NARX)[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 178:74-84.
|
[6] |
LI Longjiang, ZHANG Kefei, WU Suqin, et al. An improved method for rainfall forecast based on GNSS-PWV[J]. Remote Sensing, 2022, 14(17):4280.
|
[7] |
KANDA M. Correlation between convective heavy rainfalls and GPS precipitable water[C]//Procedings of 2003 International Workshop on GPS Meteorology. Tsukuba: [s.n.], 2003: 3-12.
|
[8] |
刘旭春, 王艳秋, 张正禄. 利用GPS技术遥感哈尔滨地区大气可降水量的分析[J]. 测绘通报, 2006(4):10-12, 16.
|
|
LIU Xuchun, WANG Yanqiu, ZHANG Zhenglu. Analysis of Harbin area atmosphere precipitable water vapor by using GPS technology[J]. Bulletin of Surveying and Mapping, 2006(4):10-12, 16.
|
[9] |
王勇, 何荣, 杨彬云, 等. GPS反演的可降水量与降水的对比分析研究[J]. 测绘科学, 2010, 35(5):80-82.
|
|
WANG Yong, HE Rong, YANG Binyun, et al. Study of comparisons between GPS precipitable water vapor and rainfall[J]. Science of Surveying and Mapping, 2010, 35(5):80-82.
|
[10] |
SHI Junbo, XU Chaoqian, GUO Jiming, et al. Real-time GPS precise point positioning-based precipitable water vapor estimation for rainfall monitoring and forecasting[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6):3452-3459.
|
[11] |
SUPARTA W, ZAINUDIN S K. Precipitation analysis using GPS meteorology over Antarctic Peninsula[C]//Proceedings of 2015 International Conference on Space Science and Communication. Langkawi: IEEE, 2015: 493-497.
|
[12] |
WANG Binyan, ZHAO Linna, BAI Xuemei. The characteristics investigation of ground-based GPS/PWV during the “7.21” extreme rainfall event in Beijing[C]//Proceedings of China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume II. Berlin: Springer, 2015: 563-574.
|
[13] |
YAO Yibin, SHAN Lulu, ZHAO Qingzhi. Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application[J]. Scientific Reports, 2017, 7(1):12465.
|
[14] |
ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. GPS-based PWV for precipitation forecasting and its application to a typhoon event[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 167:124-133.
|
[15] |
刘洋, 赵庆志, 姚顽强. 联合GNSS PWV与气象参数的短临降雨预测[C]//第十一届中国卫星导航年会. 成都: [s.n.], 2020: 6.
|
|
LIU Yang, ZHAO Qingzhi, YAO Wanqiang. Combining GNSS-derived PWV and meteorological parameters for short-term rainfall forecasting[C]//Proceedings of the 11th China Satellite Navigation Annual Conference. Chengdu: [s.n.], 2020: 6.
|
[16] |
KIM Y J, JEE J B, LIM B. Investigating the influence of water vapor on heavy rainfall events in the southern Korean peninsula[J]. Remote Sensing, 2023, 15(2):340.
|
[17] |
ROSE M S, SUNIL P S, ZACHARIA J, et al. Early detection of heavy rainfall events associated with the monsoon in Kerala, India using GPS derived ZTD and PWV estimates: a case study[J]. Journal of Earth System Science, 2023, 132(1):23.
|
[18] |
LIU Yang, ZHAO Qingzhi, YAO Wanqiang, et al. Short-term rainfall forecast model based on the improved BP-NN algorithm[J]. Scientific Reports, 2019, 9(1):19751.
|
[19] |
LI Haobo, WANG Xiaoming, ZHANG Kefei, et al. A neural network-based approach for the detection of heavy precipitation using GNSS observations and surface meteorological data[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 225:105763.
|
[20] |
GORISHNIY Y, RUBACHEV I, KHRULKOV V, et al. Revisiting deep learning models for tabular data[EB/OL]. [2023-03-08]. http://arxiv.org/abs/2106.11959.
|
[21] |
LIANG Hong, CAO Yunchang, WAN Xiaomin, et al. Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China[J]. Geodesy and Geodynamics, 2015, 6(2):135-142.
|
[22] |
SAASTAMOINEN J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites[M]//Geophysical Monograph Series. Washington, D. C.: American Geophysical Union, 2013: 247-251.
|
[23] |
SAASTAMOINEN J. Introduction to practical computation of astronomical refraction[J]. Bulletin Géodésique (1946-1975), 1972, 106(1):383-397.
|
[24] |
XIONG Zhaohui, ZHANG Bao, SANG Jizhang, et al. Fusing precipitable water vapor data in China at different timescales using an artificial neural network[J]. Remote Sensing, 2021, 13(9):1720.
|
[25] |
李浩博. 基于GNSS大气反演信息的短临极端天气预警预报研究[D]. 徐州: 中国矿业大学, 2021.
|
|
LI Haobo. Research on early warning and forecasting of short-term and impending extreme weather based on GNSS atmospheric inversion information[D]. Xuzhou: China University of Mining and Technology, 2021.
|
[26] |
ZHAO Qingzhi, LIU Yang, YAO Wanqiang, et al. Hourly rainfall forecast model using supervised learning algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:4100509.
|
[27] |
MANANDHAR S, DEV S, LEE Y H, et al. A data-driven approach to detect precipitation from meteorological sensor data[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, 2018: 3872-3875.
|
[28] |
YEN S J, LEE Yueshi. Cluster-based under-sampling approaches for imbalanced data distributions[J]. Expert Systems with Applications, 2009, 36(3):5718-5727.
|
[29] |
RAHMANM M, DAVIS D. Cluster based under-sampling for unbalanced cardiovascular data[J]. Proceedings of the World Congress on Engineering, 2013, 3, 3-5.
|
[30] |
MYERS-BEAGHTON A K, VVEDENSKY D D. Chapman-Kolmogorov equation for Markov models of epitaxial growth[J]. Journal of Physics A: Mathematical and General, 1989, 22(11):L467-L475.
|