测绘学报 ›› 2024, Vol. 53 ›› Issue (12): 2316-2327.doi: 10.11947/j.AGCS.2024.20230035

• 海洋测量 • 上一篇    下一篇

基于改进BPNN的声速场分层建模

王朝莹(), 柴洪洲(), 杜祯强   

  1. 信息工程大学地理空间信息学院,河南 郑州 450001
  • 收稿日期:2023-02-13 出版日期:2025-01-06 发布日期:2025-11-06
  • 通讯作者: 柴洪洲 E-mail:xdyy1211@163.com;chaihz1969@163.com
  • 作者简介:第一王朝莹(1999—),女,硕士生,研究方向为卫星海洋测量。E-mail:xdyy1211@163.com
  • 基金资助:
    国家自然科学基金(42074014)

Hierarchical modeling of sound velocity field based on improved BPNN

Zhaoying WANG(), Hongzhou CHAI(), Zhenqiang DU   

  1. Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, China
  • Received:2023-02-13 Online:2025-01-06 Published:2025-11-06
  • Contact: Hongzhou CHAI E-mail:xdyy1211@163.com;chaihz1969@163.com
  • About author:WANG Zhaoying (1999—), female, postgraduate, majors in hydrographic surveying and charting. E-mail: xdyy1211@163.com
  • Supported by:
    The National Natural Science Foundation of China(42074014)

摘要:

针对BPNN在三维声速场建模应用中存在的预测精度低、极易陷入局部最优及可解释性弱等局限性,提出了一种基于BPNN的温盐场建模方法,并联合声速经验公式设计了声速分层建模方案。同时通过引入自适应粒子群优化算法,对BPNN函数和架构进行改进和优化,提高了温盐场建模精度。采用中国南海中部区域的BOA_Argo网格数据对所提算法的建模性能进行试验,结果表明,本文算法能够充分反映海洋声速场物理特性,相较于传统算法其建模精度更高、稳健性更强,且具有优秀的稳定性和可靠性。

关键词: 三维声速场, 反向传播神经网络, 粒子群优化算法, BOA_Argo网格数据

Abstract:

Aiming at the limitations of BPNN in the application of 3D sound velocity field modeling, such as low prediction accuracy, easy to fall into the local optimum, and weak interpretability, a method of the thermohaline field modeling based on BPNNs is proposed, and a sound velocity hierarchical modeling scheme is designed jointly with the empirical equation of sound velocity. Meanwhile, the BPNN function and architecture are improved and optimized by introducing an adaptive particle swarm optimization algorithm to improve the accuracy of the thermohaline field modeling. Experiments on the modeling performance of the proposed algorithm are conducted using BOA_Argo grid data in the central region of the South China Sea. The results show that the algorithm proposed in this paper can fully reflect the physical properties of the ocean sound velocity field, with higher modeling accuracy and robustness than traditional algorithms, and with excellent stability and reliability.

Key words: 3D sound velocity field, back propagation neural network, particle swarm optimization algorithm, BOA_Argo grid data

中图分类号: