测绘学报 ›› 2024, Vol. 53 ›› Issue (9): 1829-1841.doi: 10.11947/j.AGCS.2024.20230444

• 地图学与地理信息 • 上一篇    

面向行人导航意图探测的脑电分类研究

方志祥(), 王禄斌   

  1. 武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉 430079
  • 收稿日期:2023-09-29 发布日期:2024-10-16
  • 作者简介:方志祥(1977—),男,博士,教授,研究方向为时空地理信息系统、人类活动大数据时空建模与分析和行人导航理论与方法。E-mail:zxfang@whu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(42371411)

Detecting pedestrian intention using EEG signals in navigation

Zhixiang FANG(), Lubin WANG   

  1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
  • Received:2023-09-29 Published:2024-10-16
  • About author:FANG Zhixiang (1977—), male, PhD, professor, majors in space-time geographic information system, spatial and temporal modeling and analysis of human activity big data, the theories and methods of pedestrian navigation. E-mail: zxfang@whu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42371411)

摘要:

行人导航意图的自动识别是行人导航研究的一个难点问题,对建立智慧导航服务与新型的人机交互方式至关重要。目前,利用行为模式推估导航意图成为主流的解决方案,但是,这种方案依赖多种传感器且具有时滞性。本文提出了一种基于脑成像技术的行人导航意图探测方法,通过多导联的、高时间分辨率的脑电信号解译行人的转向意图。首先,在处于道路交叉口的场景下,依照标准的运动想象范式采集得到4类导航意图对应的脑电原始数据,包括直行、停止、左转和右转;然后,融合脑电在时频域、空间域与功能连接上的特征,构建表达脑电活动过程的脑电时空连接网络,便于捕获与导航意图高度相关的脑电特征;最后,采用图卷积神经网络编码脑电时空连接网络,完成由脑电到4类导航意图的映射,并利用9个被试者的脑电数据作为样本集对本文方法的有效性进行验证。试验结果表明,采用短时窗(1 s)探测4类导航意图的平均精度为0.443±0.062,最高精度可达0.571。采用长时窗(6 s)探测4类导航意图的平均精度为0.525±0.084,最高精度可达0.665。该方法的探测精度略优于其他脑电解译算法,且对前进和停止意图的识别能力优秀,最高可达0.740和0.700。

关键词: 行人导航, 导航意图识别, EEG, GCN

Abstract:

The automatic recognition of pedestrian intentions is a difficult issue in location-based services, which is crucial for establishing intelligent navigation services and new human-computer interaction method. Currently, using behavior patterns to estimate pedestrian intentions has become a mainstream solution, but this approach relies on multiple sensors and has time delays. This article proposes a pedestrian intention detection method based on brain imaging technology, which interprets pedestrian turning intentions through multi-channel, high-resolution EEG signals. Firstly, according to the standard motor imagery paradigm, EEG samples corresponding to four types of intentions within road intersection scenes were collected, including straight ahead, stop, left turn, and right turn. Then, by fusing the features of EEG in time-frequency domain, spatial domain, and functional connectivity domain, the spatiotemporal functional connectivity networks (STFCNs) of EEG are constructed to express the process of EEG activity, facilitating the capture of EEG features highly related to the intent. Finally, a graph convolutional neural network was used to encode the STFCNs, completing the mapping from EEG to four types of navigation intentions. The experimental results show that the average accuracy (F1 score) of detecting four types of intentions using a short time window (1 s) is 0.443±0.062, and the highest accuracy can reach 0.571. The average accuracy with a long time window (6 s) is 0.525±0.084, and the highest accuracy is 0.665. The detection accuracy of this method is slightly better than other classification algorithms, and its detection ability for forward and stop intentions is excellent, up to 0.740 and 0.700.

Key words: pedestrian navigation, intention detection, EEG, GCN

中图分类号: