测绘学报 ›› 2025, Vol. 54 ›› Issue (3): 510-522.doi: 10.11947/j.AGCS.2025.20240147

• 摄影测量学与遥感 • 上一篇    下一篇

基于Landsat长时间序列影像的城市生态品质时空演变及驱动因素分析

高永刚1,2(), 刘雨婷1, 徐涵秋1,2   

  1. 1.福州大学环境与安全工程学院,福建 福州 350108
    2.福州大学遥感信息工程研究所,福建 福州 350108
  • 收稿日期:2024-04-15 出版日期:2025-04-11 发布日期:2025-04-11
  • 作者简介:高永刚(1976—),男,博士,副教授,研究方向为遥感图像处理与应用。 E-mail:yggao@fzu.edu.cn
  • 基金资助:
    福建省自然科学基金(2023J01064)

Analysis of the spatio-temporal evolution and driving factors of urban ecological quality based on long-term Landsat image time series

Yonggang GAO1,2(), Yuting LIU1, Hanqiu XU1,2   

  1. 1.College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
    2.Institute of Remote Sensing Information Engineering, Fuzhou University, Fuzhou 350108, China
  • Received:2024-04-15 Online:2025-04-11 Published:2025-04-11
  • About author:GAO Yonggang (1976—), male, PhD, associate professor, majors in remote sensing image processing and application. E-mail: yggao@fzu.edu.cn
  • Supported by:
    The Natural Science Foundation of Fujian Province(2023J01064)

摘要:

分析城市生态质量的时空演变及其驱动因素,对区域环境保护与高质量可持续发展至关重要。本文基于多时相Landsat卫星遥感影像及相关辅助数据,利用遥感生态指数(remote sensing ecological index,RSEI),并结合Theil-Sen估计、Mann-Kendall趋势检验、Hurst指数、最优参数地理探测器(optimal parameters-based geographical detectors,OPGD)及多尺度地理加权回归(multi-scale geographically weighted regression,MGWR)模型构建了系统化精细化的城市生态品质评价分析框架。为了验证该框架在快速城市化背景下的适用性和有效性,本文将其用于探究过去20年东莞市的生态质量变化及其影响因素。研究表明:过去20 a间,东莞市生态环境质量经历了恶化-改善-再恶化的复杂动态变化过程。此外,前瞻性预测分析进一步明确了未来生态质量变化的重点区域,并识别出面临严重生态风险及具备较大改善潜力的区域。

关键词: 时空演变, 驱动因素, 最优参数地理探测器, 遥感生态指数, 多尺度地理加权回归

Abstract:

Analyzing the spatio-temporal evolution of urban ecological quality and its driving factors is crucial for regional environmental protection and sustainable development. This paper presents a robust analytical framework for urban ecological quality evaluation based on multi-temporal Landsat satellite remote sensing imagery and auxiliary data. The framework integrates the remote sensing ecological index (RSEI) with Theil-Sen estimation, Mann-Kendall trend test, Hurst index, optimal parameters-based geographical detectors (OPGD), and multi-scale geographically weighted regression (MGWR). To verify its applicability and effectiveness in the context of rapid urbanization, this framework was used to investigate ecological quality changes and influencing factors in Dongguan city over the past 20 years. The results show that Dongguan's ecological environment has undergone a complex dynamic process of deterioration-improvement-re-deterioration during the 20-year period. Furthermore, forward-looking predictive analysis identified key areas of future ecological change and regions facing severe ecological risks as well as those with significant improvement potential. This comprehensive analysis provides scientific support for ecological management in Dongguan and offers valuable insights for similar regions undergoing rapid urbanization.

Key words: spatio-temporal evolution, driving factors, OPGD, RSEI, MGWR

中图分类号: