测绘学报 ›› 2021, Vol. 50 ›› Issue (1): 117-131.doi: 10.11947/j.AGCS.2021.20190497
李钦, 游雄, 李科, 王玮琦
收稿日期:
2019-12-09
修回日期:
2020-09-14
发布日期:
2021-01-15
通讯作者:
游雄
E-mail:youarexiong@163.com
作者简介:
李钦(1990-),男,博士生,研究方向为深度学习与机器视觉。E-mail:leequer120419@163.com
基金资助:
LI Qin, YOU Xiong, LI Ke, WANG Weiqi
Received:
2019-12-09
Revised:
2020-09-14
Published:
2021-01-15
Supported by:
摘要: 物体空间关系指的是物体在欧氏空间中的邻近关系,根据图像中包含物体的邻近关系解决图像匹配的问题。本文首先基于对比机制训练物体块特征提取网络,构建物体块深度特征,该特征可以有效匹配不同图像中的相同物体块;其次,基于已有的先验图像数据推理表达图像中物体的空间邻近关系,构建场景物体空间邻近图;进而基于该空间邻近图计算场景图像对的空间邻近度,完成图像空间关系匹配。试验表明不匹配图像间的空间邻近度一般为0,而匹配图像间的空间邻近度一般大于0,本文空间关系匹配涉及多个物体间的相互关系,具有更强的稳健性,其匹配效果明显优于对比试验中的其他方法,可以高效稳定地完成图像匹配任务。
中图分类号:
李钦, 游雄, 李科, 王玮琦. 图像匹配的物体空间关系推理表达[J]. 测绘学报, 2021, 50(1): 117-131.
LI Qin, YOU Xiong, LI Ke, WANG Weiqi. Spatial relation reasoning and representation for image matching[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 117-131.
[1] CUMMINS M, NEWMAN P. FAB-MAP:appearance-based place recognition and mapping using a learned visual vocabulary model[C]//Proceedings of the 27th International Conference on Machine Learning (ICML-10).Haifa, Israel:Omnipress, 2010. [2] QIU Kaichang, WAN Wenhui, ZHAO Hongying, et al. Progress and applications of visual SLAM[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):38-49. [3] 李向阳, 庄越挺, 潘云鹤. 基于内容的图像检索技术与系统[J]. 计算机研究与发展, 2001, 38(3):344-354. LI Xiangyang, ZHUANG Yueting, PAN Yunhe. The technique and systems of content-based image retrieval[J]. Journal of Computer Research and Development, 2001, 38(3):344-354. [4] 杨珂, 李从敏, 周维勋, 等. 卷积神经网络多层特征联合的遥感图像检索[J]. 测绘科学, 2019, 44(7):9-15, 34. YANG Ke, LI Congmin, ZHOU Weixun, et al. Remote sensing image retrieval based on multi-layer feature integration of convolution neural networks[J]. Science of Surveying and Mapping, 2019, 44(7):9-15, 34. [5] 袁一, 程亮, 宗雯雯, 等. 互联网众源照片的三维重建定位技术[J]. 测绘学报,2018, 47(5):631-643. DOI:10.11947/j.AGCS.2018.20170365. YUAN Yi, CHENG Liang, ZONG Wenwen, et al. Crowd-sourced pictures geo-localization method based on 3D reconstruction[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):631-643. DOI:10.11947/j.AGCS.2018.20170365. [6] BVRKI M, CADENA C, GILITSCHENSKI I, et al. Appearance-based landmark selection for visual localization[J]. Journal of Field Robotics, 2019, 36(6):1041-1073. [7] LI Qin, LI Ke, YOU Xiong, et al. Place recognition based on deep feature and adaptive weighting of similarity matrix[J]. Neurocomputing, 2016, 199:114-127. [8] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision.Kerkyra, Greece:IEEE,1999. [9] BAY H, TUYTELAARS T, VAN GOOL L. SURF:speeded up robust features[C]//Proceedings of the 9th European Conference on Computer Vision. Graz, Austria:Springer,2006. [10] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359. [11] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB:An efficient alternative to SIFT or SURF[C]//Proceedings of International Conference on Computer Vision. Barcelona:IEEE, 2012. [12] SIVIC J, ZISSERMAN A. Video Google:A text retrieval approach to object matching in videos[C]//Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France:IEEE, 2003. [13] CAO Song, SNAVELY N. Learning to match images in large-scale collections[C]//Proceedings of 2012 European Conference on Computer Vision. Florence, Italy:Springer, 2012. [14] JÉGOU H, DOUZE M, SCHMID C, et al. Aggregating local descriptors into a compact image representation[C]//Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA:IEEE, 2010. [15] JAAKKOLA T S, HAUSSLER D. Exploiting generative models in discriminative classifiers[C]//Proceedings of the 11th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 1998:487-493. [16] PERRONNIN F, DANCE C. Fisher kernels on visual vocabularies for image categorization[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN:IEEE, 2007:1-8. [17] ARANDJELOVIĆ R, GRONAT P, TORII A, et al. NetVLAD:CNN architecture for weakly supervised place recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6):1437-1451. [18] 李钦, 游雄, 李科, 等. 图像深度层次特征提取算法[J]. 模式识别与人工智能, 2017, 30(2):127-136. LI Qin, YOU Xiong, LI Ke, et al. Deep hierarchical feature extraction algorithm[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(2):127-136. [19] KRIZHEVSKYA, SUTSKEVERI, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. London:MIT Press,2012:1097-1105. [20] SVNDERHAUF N, SHIRAZI S, DAYOUB F, et al. On the performance of convNet features for place recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany:IEEE, 2015:4297-4304. [21] MELEKHOV I, KANNALA J, RAHTU E. Siamese network features for image matching[C]//Proceedings of the 23rd International Conference on Pattern Recognition (ICPR). Cancun, Mexico:IEEE, 2016:378-383. [22] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). San Diego, CA:IEEE, 2005:539-546. [23] FINMAN R, PAULL L, LEONARD J. Toward object-based place recognition in dense RGB-D maps[C]//Proceedings of ICRA Workshop Visual Place Recognition in Changing Environments. Seattle, WA:[s.n.], 2015. [24] PEPPERELL E, CORKE P I, MILFORD M. Routed roads:Probabilistic vision-based place recognition for changing conditions, split streets and varied viewpoints[J]. The International Journal of Robotics Research, 2016, 35(9):1057-1179. [25] CASCIANELLI S, COSTANTE G, BELLOCCHIO E, et al. Robust visual semi-semantic loop closure detection by a covisibility graph and CNN features[J]. Robotics and Autonomous Systems, 2017, 92:53-65. [26] ZITNICK C L, DOLLÁR P. Edge boxes:locating object proposals from edges[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland:Springer, 2014. [27] DOLLÁR P, ZITNICK C L. Structured forests for fast edge detection[C]//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia:IEEE, 2014. [28] BROWN M, HUA Gang, WINDER S. Discriminative learning of local image descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(1):43-57. [29] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? thekitti vision benchmark suite[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI:IEEE, 2012:3354-3361. [30] HUANG Xinyu, WANG Peng, CHENG Xinjing, et al. The apolloscape open dataset for autonomous driving and its application[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10):2702-2719. [31] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV:IEEE, 2016:2818-282. [32] CHRISTIAN S, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA:IEEE, 2015:1-9. |
[1] | 刘经南, 罗亚荣, 郭迟, 高柯夫. PNT智能与智能PNT[J]. 测绘学报, 2022, 51(6): 811-828. |
[2] | 韩李涛, 周丽娟, 龚城, 张爱国. 顾及步行习惯的室内导航网络及其生成算法[J]. 测绘学报, 2022, 51(5): 729-738. |
[3] | 方金凤, 孟祥福. 基于LBSN和多图融合的兴趣点推荐[J]. 测绘学报, 2022, 51(5): 739-749. |
[4] | 张睿卓. 基于多源数据的林区电力走廊安全风险评估方法[J]. 测绘学报, 2022, 51(5): 784-784. |
[5] | 夏吉喆, 周颖, 李珍, 李帆, 乐阳, 程涛, 李清泉. 城市时空大数据驱动的新型冠状病毒传播风险评估——以粤港澳大湾区为例[J]. 测绘学报, 2020, 49(6): 671-680. |
[6] | 朱庆, 冯斌, 李茂粟, 陈媚特, 徐肇文, 谢潇, 张叶廷, 刘铭崴, 黄志勤, 冯义从. 面向动态关联数据的高效稀疏图索引方法[J]. 测绘学报, 2020, 49(6): 681-691. |
[7] | 陆川伟, 孙群, 陈冰, 温伯威, 赵云鹏, 徐立. 车辆轨迹数据的道路学习提取法[J]. 测绘学报, 2020, 49(6): 692-702. |
[8] | 尹烁, 闫小明, 晏雄锋. 基于特征边重构的建筑物化简方法[J]. 测绘学报, 2020, 49(6): 703-710. |
[9] | 吴华意, 黄蕊, 游兰, 向隆刚. 出租车轨迹数据挖掘进展[J]. 测绘学报, 2019, 48(11): 1341-1356. |
[10] | 郭庆胜, 刘洋, 李萌, 程晓茜, 何捷, 王慧慧, 魏智威. 基于网格模型的导航道路图渐进式化简方法[J]. 测绘学报, 2019, 48(11): 1357-1368. |
[11] | 吴政, 武鹏达, 李成名. 对等网络下自适应层级的矢量数据时空索引构建方法[J]. 测绘学报, 2019, 48(11): 1369-1379. |
[12] | 王培晓, 张恒才, 王海波, 吴升. ST-CFSFDP:快速搜索密度峰值的时空聚类算法[J]. 测绘学报, 2019, 48(11): 1380-1390. |
[13] | 万子健, 李连营, 杨敏, 周校东. 车辆轨迹数据提取道路交叉口特征的决策树模型[J]. 测绘学报, 2019, 48(11): 1391-1403. |
[14] | 胡光辉, 熊礼阳, 汤国安. DEM地表坡向变率的向量几何计算法[J]. 测绘学报, 2019, 48(11): 1404-1414. |
[15] | 张旭, 郝向阳, 李建胜, 李朋月. 监控视频中动态目标与地理空间信息的融合与可视化方法[J]. 测绘学报, 2019, 48(11): 1415-1423. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||