[1] ZHENG Yu. Trajectory data mining:an overview[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2015, 6(3):29. [2] MA Xiaolei, TAO Zhimin, WANG Yinhai, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C:Emerging Technologies, 2015, 54:187-197. [3] WANG Yingzi, ZHOU Xiao, NOULAS A, et al. Predicting the Spatio-temporal evolution of chronic diseases in population with human mobility data[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence.[S.l.]:IJCAI, 2018:3578-3584. [4] 王丽鲲. 基于社交媒体地理数据挖掘的游客时空行为分析[D]. 上海:上海师范大学, 2017. WANG Likun. Spatial temporal behavior analysis of tourists based on social media geographic data mining[D]. Shanghai:Shanghai Normal University, 2017. [5] LIU Yu, LIU Xi, GAO Song, et al. Social sensing:a new approach to understanding our socioeconomic environments[J]. Annals of the Association of American Geographers, 2015, 105(3):512-530. [6] LI Xiaolong, GANG Pan, WU Zhaohui, et al. Prediction of urban human mobility using large-scale taxi traces and its applications[J]. Frontiers of Computer Science, 2012, 6(1):111-121. [7] VLAHOGIANNI E I, GOLIAS J C, KARLAFTIS M G. Short-term traffic forecasting:overview of objectives and methods[J]. Transport Reviews, 2004, 24(5):533-557. [8] OKUTANI I, STEPHANEDES Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B:Methodological, 1984, 18(1):1-11. [9] 刘静, 关伟. 交通流预测方法综述[J]. 公路交通科技, 2004, 21(3):82-85. LIU Jing, GUAN Wei. A summary of traffic flow forecasting methods[J]. Journal of Highway and Transportation Research and Development, 2004, 21(3):82-85. [10] DEVEAUD R, ALBAKOUR M D, MACDONALD C, et al. Experiments with a venue-centric model for personalised and time-aware venue suggestion[C]//Proceedings of the 24th ACM International on Conference on Information & Knowledge Management. Melbourne:ACM, 2015. [11] 董春娇, 邵春福, 诸葛承祥, 等. 拥挤流状态下城市快速路交通流时空特性[J]. 北京工业大学学报, 2012, 38(8):1242-1246, 1268. DONG Chunjiao, SHAO Chunfu, ZHUGE Chengxiang, et al. Spatial and temporal characteristics for congested traffic on urban expressway[J]. Journal of Beijing Polytechnic University, 2012, 38(8):1242-1246, 1268. [12] HU Wangsu, YAO Zijun, YANG Sen, et al. Discovering urban travel demands through dynamic zone correlation in location-based social networks[C]//Proceedings of 2018 Joint European Conference on Machine Learning & Knowledge Discovery in Databases. Dublin:Springer, 2018. [13] DENG Dingxiong, SHAHABI C, DEMIRYUREK U, et al. Latent space model for road networks to predict time-varying traffic[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data. California:ACM, 2016. [14] YANN L, YOSHUA B, HINTON G, et al. Deep learning[J]. Nature, 2015, 521(7553):436-444. [15] ZHANG Junbo, ZHENG Yu, QI Dekang. Deep Spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceeding of the 31 AAAI Conference on Artificial Intelligence (AAAI-17). San Francisco:AAAI, 2016. [16] YAO Huaxiu, WU Fei, KE Jintao, et al. Deep multi-view spatial-temporal network for taxi demand prediction[C]//Proceedings of 2018 National Conference on Artificial Intelligence. Honolulu:AAAI, 2018:2588-2595. [17] ZHAO Ling, SONG Yujiao, ZHANG Chao, et al. T-GCN:a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9):3848-3858. [18] YAO Huaxiu, TANG Xianfeng, WEI Hua, et al. Revisiting spatial-temporal similarity:a deep learning framework for traffic prediction[C]//Proceedings of 2019 AAAI Conference on Artificial Intelligence. Palo Alto:AAAI, 2019. [19] BAHDANAU D, CHO K, BENGIO Y, et al. Neural machine translation by jointly learning to align and translate[C]//Proceedings of 2015 Interna-tional Conference on Learning Representations. SanDiego:ICLR, 2015. [20] 刘瑜. 基于空间大数据的社会感知[J]. 中国计算机学会通讯, 2015, 11(11):27-32. LIU Yu. Social computing based on spatial data[J]. Communications of CCF, 2015, 11(11):27-32. [21] 陈超, 齐峰. 卷积神经网络的发展及其在计算机视觉领域中的应用综述[J]. 计算机科学, 2019, 46(3):63-73. CHEN Chao, QI Feng. Review on development of convolutional neural network and its application in computer vision[J]. Computer Science, 2019, 46(3):63-73. [22] MOREIRA-MATIAS L, GAMA J, FERREIRA M, et al. Predicting taxi-passenger demand using streaming data[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3):1393-1402. [23] GOODCHILD M F. Models of scale and scales of modelling[M]//TATE N J, ATKINSON P M. Modelling Scale in Geographical Information Science. New York:John Wiley and Sons, 2001. [24] LUO Weijie, LI Yujia, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook:ACM, 2016. [25] XIA Chang, ZHANG Anai, WANG Haijun, et al. Modeling urban growth in a metropolitan area based on bidirectional flows, an improved gravitational field model, and partitioned cellular automata[J]. International Journal of Geographical Information Science, 2019, 33(5):877-899. [26] 陆川伟, 孙群, 陈冰, 等. 车辆轨迹数据的道路学习提取法[J]. 测绘学报, 2020, 49(6):692-702. DOI:10.11947/j.AGCS.2020.20190305. LU Chuanwei, SUN Qun, CHEN Bing, et al. Road learning extraction method based on vehicle trajectory data[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6):692-702. DOI:10.11947/j.AGCS.2020.20190305. [27] SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61:85-117. [28] BENGIO Y, SIMARD P Y, FRASCONI P, et al. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2):157-166. [29] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [30] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[C]//Proceedings of 2014 Deep Learning and Representation Learning Workshop. Montreal:NIPS, 2014. [31] GAO Song, JANOWICZ K, COUCLELIS H. Extracting urban functional regions from points of interest and human activities on location-based social networks[J]. Transactions in GIS, 2017(21):446-467. [32] 谢志文, 王海军, 张彬, 等. 城市扩展元胞自动机多结构卷积神经网络模型[J]. 测绘学报, 2020, 49(3):375-385. DOI:10.11947/j.AGCS.2020.20190147. XIE Zhiwen, WANG Haijun, ZHANG Bin, et al. Urban expansion cellular automata model based on multi-structures convolutional neural networks[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3):375-385. DOI:10.11947/j.AGCS.2020. 20190147. [33] SMOLA A J, SCHÖLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3):199-222. |