[1] FROUDE M J, PETLEY D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences, 2018, 18(8): 2161-2181. [2] GLADE T, NADIM F. Early warning systems for natural hazards and risks[J]. Natural Hazards, 2014, 70(3): 1669-1671. [3] 许强, 汤明高, 徐开祥, 等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报, 2008, 27(6): 1104-1112. XU Qiang, TANG Minggao, XU Kaixiang, et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1104-1112. [4] HUANG Faming, HUANG Jinsong, JIANG Shuihua, et al. Landslide displacement prediction based on multivariate chaotic model and extreme learning machine[J]. Engineering Geology, 2017, 218: 173-186. [5] HUANG Faming, YIN Kunlong, HE Tao, et al. Influencing factor analysis and displacement prediction in reservoir landslides: a case study of three gorges reservoir (China)[J]. Technical Gazette, 2016, 23(2): 617-626. [6] MIAO Fasheng, WU Yiping, XIE Yuanhua, et al. Prediction of landslide displacement with step-like behavior based on multi-algorithm optimization and a support vector regression model[J]. Landslides, 2018, 15(3): 475-488. [7] HUANG Faming, ZHANG Jing, ZHOU Chuangbing, et al. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction[J]. Landslides, 2020, 17(1): 217-229. [8] 李麟玮, 吴益平, 苗发盛, 等. 基于变分模态分解与GWO-MIC-SVR模型的滑坡位移预测研究[J]. 岩石力学与工程学报, 2018, 37(6): 1395-1406. LI Linwei, WU Yiping, MIAO Fasheng, et al. Displacement prediction of landslides based on variational mode decomposition and GWO-MIC-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1395-1406. [9] JIANG Yanan, XU Qiang, LU Zhong, et al. Modelling and predicting landslide displacements and uncertainties by multiple machine-learning algorithms: application to Baishuihe landslide in Three Gorges Reservoir, China[J]. Geomatics, Natural Hazards and Risk, 2021, 12(1): 741-762. [10] 冯非凡, 武雪玲, 牛瑞卿, 等. 一种V/S和LSTM结合的滑坡变形分析方法[J]. 武汉大学学报(信息科学版), 2019, 44(5): 784-790. FENG Feifan, WU Xueling, NIU Ruiqing, et al. A landslide deformation analysis method using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 784-790. [11] 罗袆沅, 蒋亚楠, 许强, 等. 最优分解模态和GRU模型的库岸滑坡位移预测研究[J/OL]. 武汉大学学报(信息科学版), 2021: 1-20(2021-11-15). http://kns.cnki.net/kcms/detail/42.1676.TN.20211111.1514.002.html. LUO Huiyuan, JIANG Yanan, XU Qiang, et al. Study on displacement prediction of reservoir bank landslide based on optimal decomposition mode and GRU model[J/OL]. Geomatics and Information Science of Wuhan University, 2021: 1-20(2021-11-15). http://kns.cnki.net/kcms/detail/42.1676.TN.20211111.1514.002.html. [12] JIN Guangyin, WANG Min, ZHANG Jinlei, et al. STGNN-TTE: travel time estimation via spatial-temporal graph neural network[J]. Future Generation Computer Systems, 2022, 126: 70-81. [13] MA Zhengjing, MEI Gang, PREZIOSO E, et al. A deep learning approach using graph convolutional networks for slope deformation prediction based on time-series displacement data[J]. Neural Computing and Applications, 2021, 33(21): 14441-14457. [14] SUN Yongjiao, YAO Xin, BI Xin, et al. Time-series graph network for sea surface temperature prediction[J]. Big Data Research, 2021, 25: 100237. [15] 马帅, 刘建伟, 左信. 图神经网络综述[J]. 计算机研究与发展, 2022, 59(1): 47-80. MA Shuai, LIU Jianwei, ZUO Xin. Survey on graph neural network[J]. Journal of Computer Research and Development, 2022, 59(1): 47-80. [16] NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York, NY, USA: ACM Press, 2016: 2014-2023. [17] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[C]//Proceedings of NIPS 2014 Workshop on Deep Learning. Montreal, Canada: [s.n.], 2014. [18] GAO Shuai, HUANG Yuefei, ZHANG Shuo, et al. Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation[J]. Journal of Hydrology, 2020, 589: 125188. [19] ZHAO Ling, SONG Yujiao, ZHANG Chao, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. [20] VON LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416. [21] 吴琼, 唐辉明, 王亮清, 等. 库水位升降联合降雨作用下库岸边坡中的浸润线研究[J]. 岩土力学, 2009, 30(10): 3025-3031. WU Qiong, TANG Huiming, WANG Liangqing, et al. Analytic solutions for phreatic line in reservoir slope with inclined impervious bed under rainfall and reservoir water level fluctuation[J]. Rock and Soil Mechanics, 2009, 30(10): 3025-3031. [22] 李晓, 张年学, 廖秋林, 等. 库水位涨落与降雨联合作用下滑坡地下水动力场分析[J]. 岩石力学与工程学报, 2004, 23(21): 3714-3720. LI Xiao, ZHANG Nianxue, LIAO Qiulin, et al. Analysis on hydrodynamic field influenced by combination of rainfall and reservoir level fluctuation[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3714-3720. [23] ZHU Jiawei, WANG Qiongjie, TAO Chao, et al. AST-GCN: attribute-augmented spatiotemporal graph convolutional network for traffic forecasting[J]. IEEE Access, 2021, 9: 35973-35983. [24] 李麟玮, 吴益平, 苗发盛. 基于灰狼支持向量机的非等时距滑坡位移预测[J]. 浙江大学学报(工学版), 2018, 52(10): 1998-2006. LI Linwei, WU Yiping, MIAO Fasheng. Prediction of non-equidistant landslide displacement time series based on grey wolf support vector machine[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(10): 1998-2006. [25] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations. Toulon, France: [s.n.], 2016. [26] CHO K, VAN MERRIENBOER B, BAHDANAU D. On the properties of neural machine translation: Encoder-decoder approaches[C]//Proceedings of the 8th SSST@EMNLP 2014, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation. Doha, Qatar: [s.n.], 2014. [27] HYNDMAN R J, KOEHLER A B. Another look at measures of forecast accuracy[J]. International Journal of Forecasting, 2006, 22(4): 679-688. [28] LIAN Cheng, ZENG Zhigang, YAO Wei, et al. Multiple neural networks switched prediction for landslide displacement[J]. Engineering Geology, 2015, 186: 91-99. [29] KINGMA D P, BA J. ADAM: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego, CA, USA: [s.n.], 2014. [30] PERCIVAL D B, WALDEN A T. Spectral analysis for physical applications[M]. Cambridge: Cambridge University Press, 1993. [31] NIKOLOPOULOS K, GOODWIN P, PATELIS A, et al. Forecasting with cue information: a comparison of multiple regression with alternative forecasting approaches[J]. European Journal of Operational Research, 2007, 180(1): 354-368. [32] GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: continual prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451-2471. [33] 许强, 朱星, 李为乐, 等. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报,2022,51(7):1416-1436. DOI: 10.11947/j.AGCS.2022.20220320. XU Qiang, ZHU Xing, LI Weile, et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. DOI: 10.11947/j.AGCS.2022.20220320. |