测绘学报 ›› 2022, Vol. 51 ›› Issue (10): 1985-2000.doi: 10.11947/j.AGCS.2022.20220299
• • 下一篇
张勤, 白正伟, 黄观文, 杜源, 王铎
收稿日期:
2022-05-05
修回日期:
2022-07-01
发布日期:
2022-11-05
通讯作者:
黄观文
E-mail:huang830928@163.com
作者简介:
张勤(1958—),女,博士,教授,研究方向为空间定位技术理论与方法及地质灾害监测预警。E-mail: zhangqinle@263.net.cn
基金资助:
ZHANG Qin, BAI Zhengwei, HUANG Guanwen, DU Yuan, WANG Duo
Received:
2022-05-05
Revised:
2022-07-01
Published:
2022-11-05
Supported by:
摘要: 滑坡灾害在全球广泛分布,严重影响人类活动和人居安全。全球卫星导航系统(GNSS)已经被广泛应用于滑坡灾害监测预警工作,但其在复杂场景监测预警中依然存在诸多技术瓶颈。本文首先综述了GNSS硬件数据采集、软件数据处理和多源融合监测等方面的研究进展,重点分析了各类GNSS滑坡监测技术优势、适用范围和存在问题;然后,从滑坡位移预测、临滑时间预报和预警实施等方面介绍了GNSS滑坡预警的技术方法;最后,在梳理复杂场景GNSS实时滑坡监测预警中面临挑战的基础上,对GNSS滑坡监测预警技术的发展趋势和研究方向提出了一些思路。
中图分类号:
张勤, 白正伟, 黄观文, 杜源, 王铎. GNSS滑坡监测预警技术进展[J]. 测绘学报, 2022, 51(10): 1985-2000.
ZHANG Qin, BAI Zhengwei, HUANG Guanwen, DU Yuan, WANG Duo. Review of GNSS landslide monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 1985-2000.
[1] 霍东平, 张彬, 彭军还, 等. 滑坡变形监测技术研究现状与展望[J]. 工程勘察, 2015, 43(8): 62-67. HUO Dongping, ZHANG Bin, PENG Junhua, et al. Review and prospective of landslide deformation monitoring[J]. Geotechnical Investigation & Surveying, 2015, 43(8): 62-67. [2] HUNGR O, LEROUEIL S, PICARELLI L. The Varnes classification of landslide types, an update[J]. Landslides, 2014, 11(2): 167-194. [3] FROUDE M J, PETLEY D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences, 2018, 18(8): 2161-2181. [4] CRED U. Human cost of disasters. an overview of the last 20 years: 2000—2019[M]. Geneva: UN Office for Disaster Risk Reduction,2020. [5] ZHANG Fanyu, PENG Jianbing, HUANG Xiaowei, et al. Hazard assessment and mitigation of non-seismically fatal landslides in China[J]. Natural Hazards, 2021, 106(1): 785-804. [6] ZHANG Fanyu, HUANG Xiaowei. Trend and spatiotemporal distribution of fatal landslides triggered by non-seismic effects in China[J]. Landslides, 2018, 15(8): 1663-1674. [7] 李劲峰. GPS应用于监测岩崩滑坡[J]. 长江流域资源与环境, 1996, 5(3): 284-288. LI Jinfeng. Application of GPS in the monitoring rockfalls and landslides[J]. Pesources and Enuironment in the Yangtza Valley, 1996, 5(3): 284-288. [8] MALET J P, MAQUAIRE O, CALAIS E. The use of global positioning system techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France)[J]. Geomorphology, 2002, 43(1/2): 33-54. [9] 王利, 张勤, 李寻昌, 等. GPS RTK技术用于滑坡动态实时变形监测的研究[J]. 工程地质学报, 2011, 19(2): 193-198. WANG Li, ZHANG Qin, LI Xunchang, et al. Dynamic and real time deformation monitoring of landslide with GPS-RTK technology[J]. Journal of Engineering Geology, 2011, 19(2): 193-198. [10] WEISS P. Welcome to the global navigation multi-constellation[J]. Engineering, 2021, 7(4): 421-423. [11] HAMZA V, STOPAR B, AMBROŽIČ T, et al. Testing multi-frequency low-cost GNSS receivers for geodetic monitoring purposes[J]. Sensors (Basel, Switzerland), 2020, 20(16): 4375. [12] 余加勇, 邵旭东, 晏班夫, 等. 基于全球导航卫星系统的桥梁健康监测方法研究进展[J]. 中国公路学报, 2016, 29(4): 30-41. YU Jiayong, SHAO Xudong, YAN Banfu, et al. Research and development on global navigation satellite system technology for bridge health monitoring[J]. China Journal of Highway and Transport, 2016, 29(4): 30-41. [13] 王利, 张勤, 赵超英,等. GPS一机多天线技术在公路边坡灾害监测中的应用研究[J].公路交通科技,2005,22(S1):163-166. WANG Li, ZHANG Qin, ZHAO Chaoying, et al. The application study of GPS multi-antenna monitoring technique in the monitoring of road slope disaster[J]. Journal of Highway and Transportation Research and Development, 2005,22(S1): 163-166. [14] HE Xiufeng, JIA Dongzhen, SANG Wengang. Monitoring steep slope movement at xiaowan dam with GPS multi-antenna method[J]. Survey Review, 2011, 43(323): 462-471. [15] XIAO Ruya, HE Xiufeng. Real-time landslide monitoring of Pubugou hydropower resettlement zone using continuous GPS[J]. Natural Hazards, 2013, 69(3): 1647-1660. [16] BIAGI L, GREC F C, NEGRETTI M. Low-cost GNSS receivers for local monitoring: experimental simulation, and analysis of displacements[J]. Sensors (Basel, Switzerland), 2016, 16(12): 2140. [17] BELLONE T, DABOVE P, MANZINO A M, et al. Real-time monitoring for fast deformations using GNSS low-cost receivers[J]. Geomatics, Natural Hazards and Risk, 2016, 7(2): 458-470. [18] ODOLINSKI R, TEUNISSEN P J G. Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: a low-cost and high-grade receivers GPS-BDS RTK analysis[J]. Journal of Geodesy, 2016, 90(11): 1255-1278. [19] CINA A, PIRAS M. Performance of low-cost GNSS receiver for landslides monitoring: test and results[J]. Geomatics, Natural Hazards and Risk, 2015, 6(5/6/7): 497-514. [20] CALDERA S, REALINI E, BARZAGHI R, et al. Experimental study on low-cost satellite-based geodetic monitoring over short baselines[J]. Journal of Surveying Engineering, 2016, 142(3): 04015016. [21] BENOIT L, BRIOLE P, MARTIN O, et al. Monitoring landslide displacements with the geocube wireless network of low-cost GPS[J]. Engineering Geology, 2015, 195: 111-121. [22] NOTTI D, CINA A, MANZINO A, et al. Low-cost GNSS solution for continuous monitoring of slope instabilities applied to Madonna del Sasso sanctuary (NW Italy)[J]. Sensors (Basel, Switzerland), 2020, 20(1):289. [23] RODRIGUEZ J, DEANE E, HENDRY M T, et al. Practical evaluation of single-frequency dGNSS for monitoring slow-moving landslides[J]. Landslides, 2021, 18(11): 3671-3684. [24] HAMZA V, STOPAR B, AMBROŽIČ T, et al. Testing multi-frequency low-cost GNSS receivers for geodetic monitoring purposes[J]. Sensors (Basel, Switzerland), 2020, 20(16): 4375. [25] HAMZA V, STOPAR B, STERLE O. Testing the performance of multi-frequency low-cost GNSS receivers and antennas[J]. Sensors (Basel, Switzerland), 2021, 21(6): 2029. [26] WIELGOCKA N, HADAS T, KACZMAREK A, et al. Feasibility of using low-cost dual-frequency GNSS receivers for land surveying[J]. Sensors (Basel, Switzerland), 2021, 21(6): 1956. [27] 黄观文, 黄观武, 杜源, 等. 一种基于北斗云的低成本滑坡实时监测系统[J]. 工程地质学报, 2018, 26(4): 1008-1016. HUANG Guanwen, HUANG Guanwu, DU Yuan, et al. A lowcost real-time monitoring system for landslide deformaion with Beidou cloud[J]. Journal of Engineering Geology, 2018, 26(4): 1008-1016. [28] 白正伟, 张勤, 黄观文, 等. “轻终端+行业云”的实时北斗滑坡监测技术[J]. 测绘学报, 2019, 48(11): 1424-1429.DOI: 10.11947/j.AGCS.2019.20190167. BAI Zhengwei, ZHANG Qin, HUANG Guanwen, et al. Real-time BeiDou landslide monitoring technology of “light terminal plus industry cloud”[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1424-1429.DOI: 10.11947/j.AGCS.2019.20190167. [29] 黄观文, 白正伟, 张勤, 等. 一种灾害监测型GNSS接收机及其监测方法: 中国,CN112596076A[P]. 2021-04-02. HUANG Guanwen, BAI Zhengwei, ZHANG Qin, et al. Disaster monitoring type GNSS receiver and monitoring method thereof: China, CN112596076A[P]. 2021-04-02. [30] RAWAT M S, JOSHI V, RAWAT B S, et al. Landslide movement monitoring using GPS technology: a case study of Bakthang landslide, Gangtok, East Sikkim, India[J].Journal of Development and Agricultural Economics, 2011, 3:194-200. [31] GILI J A, COROMINAS J, RIUS J. Using global positioning system techniques in landslide monitoring[J]. Engineering Geology, 2000, 55(3): 167-192. [32] 徐绍铨, 程温鸣, 黄学斌, 等. GPS用于三峡库区滑坡监测的研究[J].水利学报,2003,34(1): 114-118. XU Shaoquan, CHENG Wenming, HUANG Xuebin, et al. The investigation of the landslides monitoring in the Three Gorges Reservoir Region by applying GPS[J]. Journal of Hydraulic Engineering,2003,34(1): 114-118. [33] 过静珺,杨久龙,丁志刚,等. GPS在滑坡监测中的应用研究:以四川雅安峡口滑坡为例[J]. 地质力学学报,2004,10(1):65-70. GUO Jingjun, YANG Jiulong, DING Zhigang, et al. GPS application in landslide monitoring a case study of the Xiakou landslide Ya'an Sichuan[J]. Journal of Geomechanics, 2004,10(1):65-70. [34] 黄劲松,李征航. GPS快速静态定位技术[J]. 武测科技,1996(2):40-44. HUANG Jinsong, LI Zhenghang. GPS fast static positioning technology[J]. WTUSM Bulletin of Science and Technology, 1996(2):40-44. [35] CALCATERRA S, CESI C, MAIO C D, et al. Surface displacements of two landslides evaluated by GPS and inclinometer systems: a case study in Southern Apennines, Italy[J]. Natural Hazards, 2012, 61(1): 257-266. [36] 亓星, 朱星, 修德皓, 等. 智能变频位移计在突发型黄土滑坡中的应用: 以甘肃黑方台黄土滑坡为例[J]. 水利水电技术, 2019, 50(5): 190-195. QI Xing, ZHU Xing, XIU Dehao, et al. Application of intelligent variable frequency displacement meter tosudden loess landslide: a case of Hiefangtai Loess Landslide[J]. Water Resources and Hydropower Engineering, 2019, 50(5): 190-195. [37] EYO E E, MUSA T A, OMAR K M, et al. Application of low-cost GPS tools and techniques for landslide monitoring: a review[J]. Jurnal Teknologi, 2014, 71(4): 71-78. [38] 韩静. BDS/GPS相对定位算法研究及其在滑坡监测中的应用[D]. 西安: 长安大学, 2017. HAN Jing. Research on BDS/GPS relative positioning algorithm and its application in landslide monitoring[D]. Xi'an: Changan University, 2017. [39] 张勤, 黄观文, 杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报, 2017, 46(10): 1300-1307.DOI: 10.11947/j.AGCS.2017.20170453. ZHANG Qin, HUANG Guanwen, YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1300-1307.DOI: 10.11947/j.AGCS.2017.20170453. [40] ZHAO W Y, ZHANG M Z, MA J, et al. Application of CORS in landslide monitoring[J].IOP Conference Series: Earth and Environmental Science, 2021, 861(4): 042049. [41] RIZOS C, HAN S. Reference station network based RTK systems-concepts and progress[J]. Wuhan University Journal of Natural Sciences, 2003, 8(2): 566-574. [42] APONTE J, MENG Xiaolin, HILL C, et al. Quality assessment of a network-based RTK GPS service in the UK[J]. Journal of Applied Geodesy, 2009, 3(1):25-34. [43] GÜMÜŞ K, SELBESOǦLU M O. Evaluation of NRTK GNSS positioning methods for displacement detection by a newly designed displacement monitoring system[J]. Measurement, 2019, 142: 131-137. [44] WANG Guoquan. GPS landslide monitoring: single base vs. network solutions:a case study based on the Puerto Rico and Virgin Islands Permanent GPS Network[J]. Journal of Geodetic Science, 2011, 1(3):191-203. [45] 张小红, 李星星, 李盼. GNSS精密单点定位技术及应用进展[J]. 测绘学报, 2017, 46(10): 1399-1407.DOI: 10.11947/j.AGCS.2017.20170327. ZHANG Xiaohong, LI Xingxing, LI Pan. Review of GNSS PPP and its application[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1399-1407.DOI: 10.11947/j.AGCS.2017.20170327. [46] 王利, 张勤, 黄观文, 等. GPS PPP技术用于滑坡监测的试验与结果分析[J]. 岩土力学, 2014, 35(7): 2118-2124. WANG Li, ZHANG Qin, HUANG Guanwen, et al. Experiment results and analysis of landslide monitoring by using GPS PPP technology[J]. Rock and Soil Mechanics, 2014, 35(7): 2118-2124. [47] LIN Chen, WU Guanye, FENG Xiaomin, et al. Application of multi-system combination precise point positioning in landslide monitoring[J]. Applied Sciences, 2021, 11(18): 8378. [48] MARTÍN A, ANQUELA A B, DIMAS-PAGÉS A, et al. Validation of performance of real-time kinematic PPP: a possible tool for deformation monitoring[J]. Measurement, 2015, 69: 95-108. [49] CAPILLA R M, BERNÉ J L, MARTÍN A, et al. Simulation case study of deformations and landslides using real-time GNSS precise point positioning technique[J]. Geomatics, Natural Hazards and Risk, 2016, 7(6): 1856-1873. [50] YIGIT C O, COSKUN M Z, YAVASOGLU H, et al. The potential of GPS precise point positioning method for point displacement monitoring: a case study[J]. Measurement, 2016, 91: 398-404. [51] 彭凤友, 聂桂根, 薛长虎, 等. GPS/BDS精密单点定位技术在滑坡变形监测中的应用研究[J]. 导航定位与授时, 2019, 6(6): 103-112. PENG Fengyou, NIE Guigen, XUE Changhu, et al. Application of GPS/BDS precise point positioning technology in landslide deformation monitoring[J]. Navigation Positioning and Timing, 2019, 6(6): 103-112. [52] WANG Guoquan. Millimeter-accuracy GPS landslide monitoring using precise point positioning with single receiver phase ambiguity (PPP-SRPA) resolution: a case study in Puerto Rico[J]. Journal of Geodetic Science, 2013, 3(1): 22-31. [53] LI Xingxing, GE Maorong, DAI Xiaolei, et al. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo[J]. Journal of Geodesy, 2015, 89(6): 607-635. [54] SHEN Nan, CHEN Liang, LIU Jingbin, et al. A review of global navigation satellite system (GNSS)-based dynamic monitoring technologies for structural health monitoring[J]. Remote Sensing, 2019, 11(9): 1001. [55] HAN Junqiang, HUANG Guanwen, ZHANG Qin, et al. A new azimuth-dependent elevation weight (ADEW) model for real-time deformation monitoring in complex environment by multi-GNSS[J]. Sensors (Basel, Switzerland), 2018, 18(8): 2473-2489. [56] HAN Junqiang, TU Rui, ZHANG Rui, et al. SNR-dependent environmental model: application in real-time GNSS landslide monitoring[J]. Sensors (Basel, Switzerland), 2019, 19(22): 5017. [57] 刘健, 黄观文, 杜源, 等. 基于基准站信噪比先验信息的GNSS观测数据多路径误差识别方法及应用[J]. 地球科学与环境学报, 2022, 44(2): 352-362. LIU Jian, HUANG Guanwen, DU Yuan, et al. Method and application of identifying multipath errors in GNSS observation data based on prior information of base station's signal-to-noise ratio[J]. Journal of Earth Sciences and Environment, 2022,44(2):352-362. [58] 鄂栋臣, 詹必伟, 姜卫平, 等. 应用GAMIT/GLOBK软件进行高精度GPS数据处理[J]. 极地研究, 2005,17(3): 173-182. E Dongchen, ZHAN Biwei, JIANG Weiping, et al. High-precision GPS data processing by gamit/globk[J]. Chinese Journal of Polar Research, 2005,17(3): 173-182. [59] DU Yuan, HUANG Guanwen, ZHANG Qin, et al. Asynchronous RTK method for detecting the stability of the reference station in GNSS deformation monitoring[J]. Sensors (Basel, Switzerland), 2020, 20(5): 1320. [60] DU Yuan, HUANG Guanwen, ZHANG Qin, et al. A new asynchronous RTK method to mitigate base station observation outages[J]. Sensors (Basel, Switzerland), 2019, 19(15): 3376. [61] LI Lihua, KUHLMANN H. Deformation detection in the GPS real-time series by the multiple Kalman filters model[J]. Journal of Surveying Engineering, 2010, 136(4): 157-164. [62] SHARIFI S, HENDRY M T, MACCIOTTA R, et al. Evaluation of filtering methods for use on high-frequency measurements of landslide displacements[J]. Natural Hazards and Earth System Sciences, 2022, 22(2): 411-430. [63] HUANG Guanwen, WANG Duo, DU Yuan, et al. Deformation feature extraction for GNSS landslide monitoring series based on robust adaptive sliding-window algorithm[J]. Frontiers in Earth Science, 2022, 10: 884500. [64] RAGHEB A E, CLARKE P J, EDWARDS S J. GPS sidereal filtering: coordinate- and carrier-phase-level strategies[J]. Journal of Geodesy, 2007, 81(5): 325-335. [65] ZHONG Ping, DING Xiaoli, YUAN Linguo, et al. Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines[J]. Journal of Geodesy, 2010, 84(2): 145-158. [66] DONG D, WANG M, CHEN W, et al. Mitigation of multipath effect in GNSS short baseline positioning by the multipath hemispherical map[J]. Journal of Geodesy, 2016, 90(3): 255-262. [67] ZHENG D W, ZHONG P, DING X L, et al. Filtering GPS time-series using a Vondrak filter and cross-validation[J]. Journal of Geodesy, 2005, 79(6): 363-369. [68] 韩军强, 黄观文, 李哲. 复杂环境下GNSS滑坡监测多路径效应分析及处理方法[J]. 地球科学与环境学报, 2018, 40(3): 355-362. HAN Junqiang, HUANG Guanwen, LI Zhe. Multipath effect analysis and processing method of GNSS landslide monitoring under complicated environment[J]. Journal of Earth Sciences and Environment, 2018, 40(3): 355-362. [69] ZHONG P, DING X L, ZHENG D W, et al. Adaptive wavelet transform based on cross-validation method and its application to GPS multipath mitigation[J]. GPS Solutions, 2008, 12(2): 109-117. [70] SU Mingkun, ZHENG Jiansheng, YANG Yanxi, et al. A new multipath mitigation method based on adaptive thresholding wavelet denoising and double reference shift strategy[J]. GPS Solutions, 2018, 22(2): 40. [71] DAI Wujiao, HUANG Dawei, CAI Changsheng. Multipath mitigation via component analysis methods for GPS dynamic deformation monitoring[J]. GPS Solutions, 2014, 18(3): 417-428. [72] 陈锐志, 王磊, 李德仁, 等. 导航与遥感技术融合综述[J]. 测绘学报, 2019, 48(12): 1507-1522.DOI: 10.11947/j.AGCS.2019.20190446. CHEN Ruizhi, WANG Lei, LI Deren, et al. A survey on the fusion of the navigation and the remote sensing techniques[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1507-1522.DOI: 10.11947/j.AGCS.2019.20190446. [73] KOMAC M, HOLLEY R, MAHAPATRA P, et al. Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides[J]. Landslides, 2015, 12(2): 241-257. [74] ZHU Wu, ZHANG Qin, DING Xiaoli, et al. Landslide monitoring by combining of CR-InSAR and GPS techniques[J]. Advances in Space Research, 2014, 53(3): 430-439. [75] ZEYBEK M, ŞANLIOGLU , ÖZDEMIR A. Monitoring landslides with geophysical and geodetic observations[J]. Environmental Earth Sciences, 2015, 74(7): 6247-6263. [76] CHAN W S, XU Y L, DING X L, et al. An integrated GPS-accelerometer data processing technique for structural deformation monitoring[J]. Journal of Geodesy, 2006, 80(12): 705-719. [77] BOCK Y, MELGAR D, CROWELL B W. Real-time strong-motion broadband displacements from collocated GPS and accelerometers[J]. Bulletin of the Seismological Society of America, 2011, 101(6): 2904-2925. [78] TU Rui, GE Maorong, WANG Rongjiang, et al. A new algorithm for tight integration of real-time GPS and strong-motion records, demonstrated on simulated, experimental, and real seismic data[J]. Journal of Seismology, 2014, 18(1): 151-161. [79] TU Rui, LIU Jinhai, LU Cuixian, et al. Cooperating the BDS, GPS, GLONASS and strong-motion observations for real-time deformation monitoring[J]. Geophysical Journal International, 2017, 209(3): 1408-1417. [80] 许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 2020, 28(2): 360-374. XU Qiang. Understanding the landslide monitoring and early warning: consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2): 360-374. [81] WU Shuangshuang, HU Xinli, ZHENG Wenbo, et al. Threshold definition for monitoring gapa landslide under large variations in reservoir level using GNSS[J]. Remote Sensing, 2021, 13(24): 4977. [82] DOK A, FUKUOKA H, KATSUMI T, et al. Tertiary creep reproduction in back-pressure-controlled ring shear test to understand the mechanism and final failure time of rainfall-induced landslides[J]. Annuals of Disaster Prevention Research Institute, Kyoto University, 2011, 54:263-270. [83] 徐峰, 汪洋, 杜娟, 等. 基于时间序列分析的滑坡位移预测模型研究[J]. 岩石力学与工程学报, 2011, 30(4): 746-751. XU Feng, WANG Yang, DU Juan, et al. Study of displacement prediction model of landslide based on time series analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 746-751. [84] 彭令, 牛瑞卿, 赵艳南, 等. 基于核主成分分析和粒子群优化支持向量机的滑坡位移预测[J]. 武汉大学学报(信息科学版), 2013, 38(2): 148-152, 161. PENG Ling, NIU Ruiqing, ZHAO Yannan, et al. Prediction of landslide displacement based on KPCA and PSO-SVR[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 148-152, 161. [85] HUANG Faming, HUANG Jinsong, JIANG Shuihua, et al. Landslide displacement prediction based on multivariate chaotic model and extreme learning machine[J]. Engineering Geology, 2017, 218: 173-186. [86] YANG Beibei, YIN Kunlong, LACASSE S, et al. Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides, 2019, 16(4): 677-694. [87] HAN Heming, SHI Bin, ZHANG Lei. Prediction of landslide sharp increase displacement by SVM with considering hysteresis of groundwater change[J]. Engineering Geology, 2021, 280: 105876. [88] 黄观文, 王家兴, 杜源, 等. 顾及降雨及库水位因素的滑坡时滞分析与预测: 以三峡库区新铺滑坡为例[J]. 地球科学与环境学报, 2021, 43(3): 621-631. HUANG Guanwen, WANG Jiaxing, DU Yuan, et al. Time-delay analysis and prediction of landslide considering precipitation and reservoir water level: a case study of Xinpu landslide in Three Gorges Reservoir Area, China[J]. Journal of Earth Sciences and Environment, 2021, 43(3): 621-631. [89] ZHANG Yonggang, TANG Jun, HE Zhengying, et al. A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide[J].Natural Hazards, 2021, 105(1): 783-813. [90] ZHANG Yonggang, TANG Jun, LIAO Raoping, et al. Application of an enhanced BP neural network model with water cycle algorithm on landslide prediction[J]. Stochastic Environmental Research and Risk Assessment, 2021, 35(6): 1273-1291. [91] ZHANG Yonggang, CHEN Xinquan, LIAO Raoping, et al. Research on displacement prediction of step-type landslide under the influence of various environmental factors based on intelligent WCA-ELM in the Three Gorges Reservoir area[J]. Natural Hazards, 2021, 107(2): 1709-1729. [92] 殷坤龙. 滑坡灾害预测预报分类[J]. 中国地质灾害与防治学报, 2003, 14(4):12-18. YIN Kunlong. Classification of landslide hazard prediction and warning[J]. The Chinese Journal of Geological Hazard and Control, 2003,14(4):12-18. [93] INTRIERI E, CARLÀ T, GIGLI G. Forecasting the time of failure of landslides at slope-scale: a literature review[J]. Earth-Science Reviews, 2019, 193: 333-349. [94] SAITO M. Forecasting the time of occurrence of a slope failure[C]//Proceedings of 6th International Conference on Soil Mechanics and Foundation Engineering. [S.l.]: IEEE, 1965:537-541. [95] SAITO M. Forecasting time of slope failure by tertiary creep[C]//Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering.Mexico City, Mexico: [s.n.]: 1969. [96] FUKOZONO T. Recent studies on time prediction of slope failure [J].Landslide News,1990,(4):9-12. [97] MUFUNDIRWA A, FUJII Y, KODAMA J. A new practical method for prediction of geomechanical failure-time[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(7): 1079-1090. [98] 胡华, 谢金华. 以速率为参量的GM(1,1)滑坡时间预报模型研究[J]. 长江科学院院报, 2018, 35(10):70-76,87. HU Hua, XIE Jinhua. GM(1,1) model of landslide time prediction based on velocity parameters[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(10):70-76,87. [99] 亓星, 朱星, 许强, 等. 基于斋藤模型的滑坡临滑时间预报方法改进及应用[J]. 工程地质学报, 2020, 28(4): 832-839. QI Xing, ZHU Xing, XU Qiang, et al. Improvement and application of landslide proximity time prediction method based on saito model[J]. Journal of Engineering Geology, 2020, 28(4): 832-839. [100] ZHANG J, WANG Z P, ZHANG G D, et al. Probabilistic prediction of slope failure time[J]. Engineering Geology, 2020, 271: 105586. [101] ZHOU Xiaoping, LIU Linjiang, XU Ce. A modified inverse-velocity method for predicting the failure time of landslides[J]. Engineering Geology, 2020, 268: 105521. [102] FEDERICO A, POPESCU M, ELIA G, et al. Prediction of time to slope failure: a general framework[J]. Environmental Earth Sciences, 2012, 66(1): 245-256. [103] 许强, 黄润秋, 李秀珍. 滑坡时间预测预报研究进展[J]. 地球科学进展, 2004,19(3): 478-483. XU Qiang, HUANG Runqiu, LI Xiuzhen. Research progress in time forecast and prediction of landslides[J]. Advance in Earth Sciences, 2004,19(3): 478-483. [104] 唐亚明, 张茂省, 薛强, 等. 滑坡监测预警国内外研究现状及评述[J]. 地质论评, 2012, 58(3): 533-541. TANG Yaming, ZHANG Maosheng, XUE Qiang, et al. Landslide monitoring and early-warning: an overview[J]. Geological Review, 2012, 58(3): 533-541. [105] LEE Huangchen, KE K H, FANG Yaomin, et al. Open-source wireless sensor system for long-term monitoring of slope movement[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(4): 767-776. [106] 殷跃平, 王文沛, 张楠, 等. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例[J]. 中国地质, 2017, 44(5): 827-841. YIN Yueping, WANG Wenpei, ZHANG Nan, et al. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: a case study of the Xinmo landslide in Maoxian county, Sichuan province[J]. Geology in China, 2017, 44(5): 827-841. [107] SHEN Nan, CHEN Liang, WANG Lei, et al. Short-term landslide displacement detection based on GNSS real-time kinematic positioning[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14. [108] 张勤,白正伟,黄观文,等. 一种远程部署的地质灾害监测装置及其监测方法:中国, CN112305564A[P].2021-02-02. ZHANG Qin, BAI Zhengwei, HUANG Guanwen, et al. A geological hazard monitoring equipment deployed by UAV remotely and its monitoring method: China,CN112305564A[P].2021-02-02. [109] CINA A, MANZINO A M, BENDEA I H. Improving GNSS landslide monitoring with the use of low-cost MEMS accelerometers[J]. Applied Sciences, 2019, 9(23): 5075. [110] 张小红, 马福建. 低轨导航增强GNSS发展综述[J]. 测绘学报, 2019, 48(9): 1073-1087.DOI: 10.11947/j.AGCS.2019.20190176. ZHANG Xiaohong, MA Fujian. Review of the development of LEO navigation-augmented GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1073-1087.DOI: 10.11947/j.AGCS.2019.20190176. [111] LI Xingxing, MA Fujian, LI Xin, et al. LEO constellation-augmented multi-GNSS for rapid PPP convergence[J]. Journal of Geodesy, 2019, 93(5): 749-764. [112] HASTAOGLU K O, SANLI D U. Monitoring Koyulhisar landslide using rapid static GPS: a strategy to remove biases from vertical velocities[J]. Natural Hazards, 2011, 58(3): 1275-1294. [113] GUZZETTI F, GARIANO S L, PERUCCACCI S, et al. Geographical landslide early warning systems[J]. Earth-Science Reviews, 2020, 200: 102973. |
[1] | 舒宝, 刘晖, 王利, 张勤, 黄观文. 区域参考站网支撑的PPP和RTK一体化服务及其性能[J]. 测绘学报, 2022, 51(9): 1870-1880. |
[2] | 杨兵, 杨志强, 田镇, 陈祥. 联合EMD-HD和小波分解的GNSS坐标时间序列降噪分析[J]. 测绘学报, 2022, 51(9): 1881-1889. |
[3] | 高涵, 袁希平, 甘淑, 张明. 利用HHT-EEMD方法分析云南区域GNSS应变时序孕震信息[J]. 测绘学报, 2022, 51(9): 1899-1910. |
[4] | 布金伟, 余科根, 韩帅. 星载GNSS-R海浪有效波高反演模型构建[J]. 测绘学报, 2022, 51(9): 1920-1930. |
[5] | 陶庭叶, 李江洋, 朱勇超, 汪俊涛, 陈皓, 时梦杰. 阶段模型修正的星载GNSS-R土壤湿度反演方法[J]. 测绘学报, 2022, 51(9): 1942-1950. |
[6] | 徐天河, 李耸, 王帅民, 江楠. 顾及气象数据的中国区域对流层延迟RBF神经网络优化模型[J]. 测绘学报, 2022, 51(8): 1690-1707. |
[7] | 李博峰, 陈广鄂. GNSS/INS组合车辆协同精密定位方法[J]. 测绘学报, 2022, 51(8): 1708-1716. |
[8] | 张克非, 李浩博, 王晓明, 朱丹彤, 何琦敏, 李龙江, 胡安东, 郑南山, 李怀展. 地基GNSS大气水汽探测遥感研究进展和展望[J]. 测绘学报, 2022, 51(7): 1172-1191. |
[9] | 党亚民, 杨强, 王伟, 梁玉可. 基于块体模型的青藏高原及邻区地壳三维构造形变分析[J]. 测绘学报, 2022, 51(7): 1192-1205. |
[10] | 袁运斌, 侯鹏宇, 张宝成. GNSS非差非组合数据处理与PPP-RTK高精度定位[J]. 测绘学报, 2022, 51(7): 1225-1238. |
[11] | 金双根, 汪奇生, 史奇奇. 单频到五频多系统GNSS精密单点定位参数估计与应用[J]. 测绘学报, 2022, 51(7): 1239-1248. |
[12] | 李星星, 张伟, 袁勇强, 张柯柯, 吴家齐, 娄嘉庆, 李婕, 郑鸿杰. GNSS卫星精密定轨综述:现状、挑战与机遇[J]. 测绘学报, 2022, 51(7): 1271-1293. |
[13] | 许强, 朱星, 李为乐, 董秀军, 戴可人, 蒋亚楠, 陆会燕, 郭晨. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报, 2022, 51(7): 1416-1436. |
[14] | 李志林, 蓝天, 遆鹏, 徐柱. 从马斯洛人生需求层次理论看地图学的进展[J]. 测绘学报, 2022, 51(7): 1536-1543. |
[15] | 彭认灿, 董箭, 贾帅东, 唐露露, 王芳. 数字水深模型建模技术研究进展与展望[J]. 测绘学报, 2022, 51(7): 1575-1587. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||