测绘学报 ›› 2022, Vol. 51 ›› Issue (7): 1416-1436.doi: 10.11947/j.AGCS.2022.20220320
许强, 朱星, 李为乐, 董秀军, 戴可人, 蒋亚楠, 陆会燕, 郭晨
收稿日期:
2022-05-11
修回日期:
2022-06-15
发布日期:
2022-08-13
作者简介:
许强(1968-),男,博士,教授,研究方向为地质灾害防治理论与方法研究。E-mail:xuqiang_68@126.com
基金资助:
XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen
Received:
2022-05-11
Revised:
2022-06-15
Published:
2022-08-13
Supported by:
摘要: 滑坡灾害是全球范围内发生频率最高、分布范围最广、造成损失最重的自然灾害之一,严重威胁着人类生命财产和重大工程设施的安全。科学监测是实现滑坡预警预报与主动防范的重要技术前提,经过多年的技术攻关,融合高分辨率光学遥感、卫星InSAR、无人机摄影测量、无线传感网络(WSN)等多种新技术方法,滑坡监测已从传统点式人工监测逐步发展到“天-空-地”多维协同监测,在我国地质灾害风险识别与监测预警方面取得显著成效。本文结合多年来对滑坡发生机理与变形破坏过程的研究认识,从天(光学遥感和InSAR)、空(无人机摄影测量)、地(全球导航卫星系统、裂缝计等专业监测)三维立体角度对我国滑坡监测技术的最新研究进展进行了系统总结,分析讨论了不同技术在工程实践中的技术优势和适用性,构建了滑坡变形破坏全过程的“天-空-地”协同监测技术体系,为滑坡地质灾害的科学防范提供一种新的思维范式和经验指导。
中图分类号:
许强, 朱星, 李为乐, 董秀军, 戴可人, 蒋亚楠, 陆会燕, 郭晨. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报, 2022, 51(7): 1416-1436.
XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436.
[1] 许强,董秀军,李为乐.基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J].武汉大学学报(信息科学版), 2019, 44(7):957-966. XU Qiang, DONG Xiujun, LI Weile. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966. [2] 何满潮,任树林,陶志刚.滑坡地质灾害牛顿力远程监测预警系统及工程应用[J].岩石力学与工程学报, 2021, 40(11):2161-2172. HE Manchao, REN Shulin, TAO Zhigang. Remote monitoring and forecasting system of Newton force for landslide geological hazards and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(11):2161-2172. [3] 许强.对滑坡监测预警相关问题的认识与思考[J].工程地质学报, 2020, 28(2):360-374. XU Qiang. Understanding the landslide monitoring and early warning:consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2):360-374. [4] 白正伟,张勤,黄观文,等."轻终端+行业云"的实时北斗滑坡监测技术[J].测绘学报, 2019, 48(11):1424-1429. DOI:10.11947/j.AGCS.2019.20190167. BAI Zhengwei, ZHANG Qin, HUANG Guanwen, et al. Real-time BeiDou landslide monitoring technology of "light terminal plus industry cloud"[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11):1424-1429. DOI:10.11947/j.AGCS.2019.20190167. [5] 廖明生,董杰,李梦华,等.雷达遥感滑坡隐患识别与形变监测[J].遥感学报, 2021, 25(1):332-341. LIAO Mingsheng, DONG Jie, LI Menghua, et al. Radar remote sensing for potential landslides detection and deformation monitoring[J]. National Remote Sensing Bulletin, 2021, 25(1):332-341. [6] 李为乐,许强,陆会燕,等.大型岩质滑坡形变历史回溯及其启示[J].武汉大学学报(信息科学版), 2019, 44(7):1043-1053. LI Weile, XU Qiang, LU Huiyan, et al. Tracking the deformation history of large-scale rocky landslides and its enlightenment[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):1043-1053. [7] 郭晨,许强,董秀军,等.无人机在重大地质灾害应急调查中的应用[J].测绘通报, 2020(10):6-11, 73. DOI:10.13474/j.cnki.11-2246.2020.0309. GUO Chen, XU Qiang, DONG Xiujun, et al. Application of UAV photogrammetry technology in the emergency rescue of catastrophic geohazards[J]. Bulletin of Surveying and Mapping, 2020(10):6-11, 73. DOI:10.13474/j.cnki.11-2246.2020.0309. [8] 郭晨,许强,董秀军,等.复杂山区地质灾害机载激光雷达识别研究[J].武汉大学学报(信息科学版), 2021, 46(10):1538-1547. GUO Chen, XU Qiang, DONG Xiujun, et al. Geohazard recognition by airborne LiDAR technology in complex mountain areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1538-1547. [9] COLESANTI C, WASOWSKI J. Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry[J]. Engineering Geology, 2006, 88(3-4):173-199. [10] CARLÀ T, INTRIERI E, RASPINI F, et al. Perspectives on the prediction of catastrophic slope failures from satellite InSAR[J]. Scientific Reports, 2019, 9(1):14137. [11] 李振洪,宋闯,余琛,等.卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J].武汉大学学报(信息科学版), 2019, 44(7):967-979. LI Zhenhong, SONG Chuang, YU Chen, et al. Application of satellite radar remote sensing to landslide detection and monitoring:challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):967-979. [12] WANG Xiaowen, LIU Guoxiang, YU Bing, et al. 3D coseismic deformations and source parameters of the 2010 Yushu earthquake (China) inferred from DInSAR and multiple-aperture InSAR measurements[J]. Remote Sensing of Environment, 2014, 152:174-189. [13] HU Leyin, DAI Keren, XING Chengqi, et al. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 82:101886. [14] BOVENGA F, WASOWSKI J, NITTI D O, et al. Using COSMO/SKYMED X-band and ENVISAT C-band SAR interferometry for landslides analysis[J]. Remote Sensing of Environment, 2012, 119:272-285. [15] TOFANI V, RASPINI F, CATANI F, et al. Persistent scatterer interferometry (PSI) technique for landslide characterization and monitoring[J]. Remote Sensing, 2013, 5(3):1045-1065. [16] SUN Qian, ZHANG Lei, DING Xiaoli, et al. Investigation of slow-moving landslides from ALOS/PALSAR images with TCPInSAR:a case study of Oso, USA[J]. Remote Sensing, 2014, 7(1):72-88. [17] AMITRANO D, GUIDA R, DELL'AGLIO D, et al. Long-term satellite monitoring of the slumgullion landslide using space-borne synthetic aperture radar sub-pixel offset tracking[J]. Remote Sensing, 2019, 11(3):369. [18] BRU G, GONZÁLEZ P J, MATEOS R M, et al. A-DInSAR monitoring of landslide and subsidence activity:a case of urban damage in Arcos de la Frontera, Spain[J]. Remote Sensing, 2017, 9(8):787. [19] YE Xia, KAUFMANN H, GUO X F. Landslide monitoring in the Three Gorges area using D-INSAR and corner reflectors[J]. Photogrammetric Engineering&Remote Sensing, 2004, 70(10):1167-1172. [20] SHI Xuguo, LIAO Mingsheng, LI Menghua, et al. Wide-area landslide deformation mapping with multi-path ALOS PALSAR data stacks:a case study of Three Gorges Area, China[J]. Remote Sensing, 2016, 8(2):136. [21] 张路,廖明生,董杰,等.基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J].武汉大学学报(信息科学版), 2018, 43(12):2039-2049. ZHANG Lu, LIAO Mingsheng, DONG Jie, et al. Early detection of landslide hazards in mountainous areas of West China using time series SAR interferometry-a case study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2039-2049. [22] DAI Keren, LI Zhenhong, TOMÁS R, et al. Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry[J]. Remote Sensing of Environment, 2016, 186:501-513. [23] LIU Xiaojie, ZHAO Chaoying, ZHANG Qin, et al. Heifangtai loess landslide type and failure mode analysis with ascending and descending Spot-mode TerraSAR-X datasets[J]. Landslides, 2020, 17(1):205-215. [24] KANG Ya, ZHAO Chaoying, ZHANG Qin, et al. Application of InSAR techniques to an analysis of the Guanling landslide[J]. Remote Sensing, 2017, 9(10):1046. [25] CIGNA F, BATESON L B, JORDAN C J, et al. Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications:nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery[J]. Remote Sensing of Environment, 2014, 152:441-466. [26] COSTANTINI M, FERRETTI A, MINATI F, et al. Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data[J]. Remote Sensing of Environment, 2017, 202:250-275. [27] DONG Jie, LIAO Mingsheng, XU Qiang, et al. Detection and displacement characterization of landslides using multi-temporal satellite SAR interferometry:a case study of Danba County in the Dadu River Basin[J]. Engineering Geology, 2018, 240:95-109. [28] 陆会燕,李为乐,许强,等.光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J].武汉大学学报(信息科学版), 2019, 44(9):1342-1354. LU Huiyan, LI Weile, XU Qiang, et al. Early detection of landslides in the upstream and downstream areas of the Baige landslide, the Jinsha River based on optical remote sensing and InSAR technologies[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9):1342-1354. [29] DAI Keren, LI Zhenhong, XU Qiang, et al. Entering the era of earth observation-based landslide warning systems:a novel and exciting framework[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(1):136-153. [30] ZHANG Lele, DAI Keren, DENG Jin, et al. Identifying potential landslides by Stacking-InSAR in southwestern China and its performance comparison with SBAS-InSAR[J]. Remote Sensing, 2021, 13(18):3662. [31] 冯文凯,顿佳伟,易小宇,等.基于SBAS-InSAR技术的金沙江流域沃达村巨型老滑坡形变分析[J].工程地质学报, 2020, 28(2):384-393. FENG Wenkai, DUN Jiawei, YI Xiaoyu, et al. Deformation analysis of Woda village old landslide in Jinsha river basin using SBAS-InSAR technology[J]. Journal of Engineering Geology, 2020, 28(2):384-393. [32] DONG Jie, ZHANG Lu, LI Menghua, et al. Measuring precursory movements of the recent Xinmo landslide in Mao County, China with Sentinel-1 and ALOS-2 PALSAR-2 datasets[J]. Landslides, 2018, 15(1):135-144. [33] KANG Ya, LU Zhong, ZHAO Chaoying, et al. Diagnosis of Xinmo (China) landslide based on interferometric synthetic aperture radar observation and modeling[J]. Remote Sensing, 2019, 11(16):1846. [34] LIU Xiaojie, ZHAO Chaoying, ZHANG Qin, et al. Deformation of the Baige landslide, Tibet, China, revealed through the integration of cross-platform ALOS/PALSAR-1 and ALOS/PALSAR-2 SAR observations[J]. Geophysical Research Letters, 2020, 47(3):e2019GL086142. [35] LI Menghua, ZHANG Lu, DING Chao, et al. Retrieval of historical surface displacements of the Baige landslide from time-series SAR observations for retrospective analysis of the collapse event[J]. Remote Sensing of Environment, 2020, 240:111695. [36] SHI Xuguo, ZHANG Lu, TANG Minggao, et al. Investigating a reservoir bank slope displacement history with multi-frequency satellite SAR data[J]. Landslides, 2017, 14(6):1961-1973. [37] JIANG Yanan, LIAO Mingsheng, ZHOU Zhiwei, et al. Landslide deformation analysis by coupling deformation time series from SAR data with hydrological factors through data assimilation[J]. Remote Sensing, 2016, 8(3):179. [38] GAGNON H. Remote sensing of landslide hazards on quick clays of eastern Canada[C]//Proceedings of the 10th International Symposium Remote Sensing of Environment. Michigan, USA:AnnArbor, 1975:803-810. [39] HUANG S L, CHEN B K. Integration of Landsat and terrain information for landslide study[C]//Proceedings of the 8th Thematic Conference on Geological Remote Sensing. Denver, Colorado:ERIM International, 1991:743-754. [40] ZHOU C H, LEE C F, LI J, et al. On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong[J]. Geomorphology, 2002, 43(3-4):197-207. [41] YAMAGUCHI Y, TANAKA S, ODAJIMA T, et al. Detection of a landslide movement as geometric misregistration in image matching of SPOT HRV data of two different dates[J]. International Journal of Remote Sensing, 2003, 24(18):3523-3534. [42] GUZZETTI F, MONDINI A C, CARDINALI M, et al. Landslide inventory maps:new tools for an old problem[J]. Earth-Science Reviews, 2012, 112(1-2):42-66. [43] SCAIONI M, LONGONI L, MELILLO V, et al. Remote sensing for landslide investigations:an overview of recent achievements and perspectives[J]. Remote Sensing, 2014, 6(10):9600-9652. [44] 李为乐.典型强震同震地质灾害分布规律及后效应研究[D].成都:成都理工大学, 2019. LI Weile. Distribution pattern and post-earthquake effect of coseismic landslides of strong earthquakes[D]. Chengdu:Chengdu University of Technology, 2019. [45] 于明山.古滑坡堆积体复活形变与堵江机理研究-以甘肃省南峪乡江顶崖滑坡为例[D].成都:成都理工大学, 2020. YU Mingshan. Study on reactivation deformation of ancient landslide accumulation body and mechanism of blocking river-a case study of Jiangdingya Landslide in Nanyu Town, Zhouqu County Gansu Province, China[D]. Chengdu:Chengdu University of Technology, 2020. [46] TURNER D, LUCIEER A, DE JONG S M. Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV)[J]. Remote Sensing, 2015, 7(2):1736-1757. [47] BRIDEAU M A, STURZENEGGER M, STEAD D, et al. Stability analysis of the 2007 Chehalis lake landslide based on long-range terrestrial photogrammetry and airborne LiDAR data[J]. Landslides, 2012, 9(1):75-91. [48] 喜文飞.滇东北山区无人机遥感影像预处理方法及滑坡特征识别研究[J].测绘学报, 2020, 49(8):1071. DOI:10.11947/j.AGCS.2020.20200081. XI Wenfei. Study on remote sensing image preprocessing method and landslide feature identification of UAV in northeast Yunnan mountain area[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8):1071. DOI:10.11947/j.AGCS.2020.20200081. [49] FERNÁNDEZ T, PÉREZ J L, CARDENAL J, et al. Analysis of landslide evolution affecting olive groves using UAV and photogrammetric techniques[J]. Remote Sensing, 2016, 8(10):837. [50] 许强,郑光,李为乐,等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J].工程地质学报, 2018, 26(6):1534-1551. XU Qiang, ZHENG Guang, LI Weile, et al. Study on successive landslide damming events of Jinsha river in Baige village on Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 26(6):1534-1551. [51] XU Qiang, LI Weile, JU Yuanzhen, et al. Multitemporal UAV-based photogrammetry for landslide detection and monitoring in a large area:a case study in the Heifangtai terrace in the Loess Plateau of China[J]. Journal of Mountain Science, 2020, 17(8):1826-1839. [52] 巨袁臻.基于无人机摄影测量技术的黄土滑坡早期识别研究——以黑方台为例[D].成都:成都理工大学, 2017. JU Yuanzhen. Early recognition of loess landslide based on UAV photogrammetry-a case study of Heifang terrace[D]. Chengdu:Chengdu University of Technology, 2017. [53] MALET J P, MAQUAIRE O, CALAIS E. The use of global positioning system techniques for the continuous monitoring of landslides:application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France)[J]. Geomorphology, 2002, 43(1-2):33-54. [54] 韩军强.高精度GNSS实时滑坡变形监测技术及环境建模分析研究[J].测绘学报, 2020, 49(3):397. DOI:10.11947/j.AGCS.2020.20190177. HAN Junqiang. Research on high precision GNSS real time landslide deformation monitoring technology and environmental modeling[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3):397. DOI:10.11947/j.AGCS.2020.20190177. [55] 王进,杨元喜,张勤,等.多模GNSS融合PPP系统间偏差特性分析[J].武汉大学学报(信息科学版), 2019, 44(4):475-481. WANG Jin, YANG Yuanxi, ZHANG Qin, et al. Analysis of inter-system bias in Multi-GNSS precise point positioning[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4):475-481. [56] ZHU Xing, XU Qiang, ZHOU Jianbin, et al. Remote landslide observation system with differential GPS[J]. Procedia Earth and Planetary Science, 2012, 5:70-75. [57] BENOIT L, BRIOLE P, MARTIN O, et al. Monitoring landslide displacements with the Geocube wireless network of low-cost GPS[J]. Engineering Geology, 2015, 195:111-121. [58] ZHU Xing, XU Qiang, QI Xing, et al. A self-adaptive data acquisition technique and its application in landslide monitoring[M]//MIKOŠ M, ARBANAS Ž, YIN Yueping, et al. Advancing Culture of Living with Landslides. Cham:Springer, 2017. [59] ZHU Xing, XI Hewei, HE Zhaoqing, et al. An intelligent wireless displacement sensor for landslide monitoring and early warning[J]. IOP Conference Series:Earth and Environmental Science, 2021, 861(7):072038. [60] XU Qiang, PENG Dalei, ZHANG Shuai, et al. Successful implementations of a real-time and intelligent early warning system for loess landslides on the Heifangtai Terrace, China[J]. Engineering Geology, 2020, 278:105817. [61] FAN Xuanmei, XU Qiang, LIU Jie, et al. Successful early warning and emergency response of a disastrous rockslide in Guizhou province, China[J]. Landslides, 2019, 16(12):2445-2457. [62] ZHU Xing, XU Qiang, ZHAO Zhiye, et al. Low frequency acoustic signals associated with rock falls, thunderstorms, and wind turbulences in field environment[J]. Applied Acoustics, 2016, 112:131-139. [63] ZHU Xing, XU Qiang ZHOU Jianbin, et al. Experimental study of infrasonic signal generation during rock fracture under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60:37-46. [64] 盛敏汉,储日升,曾求,等.地震学方法在滑坡体结构及破裂过程的应用研究进展[J].地球物理学进展, 2019, 34(6):2188-2195. SHENG Minhan, CHU Risheng, ZENG Qiu, et al. Application of seismological methods in landslide structure and rupture process[J]. Progress in Geophysics, 2019, 34(6):2188-2195. [65] SCHÖPA A, CHAO Weian, LIPOVSKY B P, et al. Dynamics of the Askja caldera July 2014 landslide, Iceland, from seismic signal analysis:precursor, motion and aftermath[J]. Earth Surface Dynamics, 2018, 6(2):467-485. [66] DAMMEIER F, MOORE J R, HAMMER C, et al. Automatic detection of alpine rockslides in continuous seismic data using hidden Markov models[J]. Journal of Geophysical Research:Earth Surface, 2016, 121(2):351-371. [67] YANG Zongji, SHAO Wei, QIAO Jianping, et al. A multi-source early warning system of MEMS based wireless monitoring for rainfall-induced landslides[J]. Applied Sciences, 2017, 7(12):1234. [68] 许强,汤明高,徐开祥,等.滑坡时空演化规律及预警预报研究[J].岩石力学与工程学报, 2008, 27(6):1104-1112. XU Qiang, TANG Minggao, XU Kaixiang, et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6):1104-1112. |
[1] | 李志伟, 许文斌, 胡俊, 冯光财, 杨泽发, 李佳, 张恒, 陈琦, 朱建军, 王琪洁, 赵蓉, 段梦. InSAR部分地学参数反演[J]. 测绘学报, 2022, 51(7): 1458-1475. |
[2] | 张勤, 赵超英, 陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报, 2022, 51(6): 885-896. |
[3] | 李荣兴, 李国君, 冯甜甜, 沈强, 乔刚, 叶真, 夏梦莲. 基于光学遥感卫星影像的南极冰流速产品和方法研究综述[J]. 测绘学报, 2022, 51(6): 953-963. |
[4] | 马张烽, 蒋弥, 李桂华, 黄腾. 空间网络对时序InSAR相位解缠的影响——以Delaunay与Dijkstra网络为例[J]. 测绘学报, 2022, 51(2): 248-257. |
[5] | 邵凯, 张厚喆, 秦显平, 黄志勇, 易彬, 谷德峰. 分布式InSAR编队卫星精密绝对和相对轨道确定[J]. 测绘学报, 2021, 50(5): 580-588. |
[6] | 何秀凤, 高壮, 肖儒雅, 罗海滨, 冯灿. 多时相Sentinel-1A InSAR的连盐高铁沉降监测分析[J]. 测绘学报, 2021, 50(5): 600-611. |
[7] | 刘青豪, 张永红, 邓敏, 吴宏安, 康永辉, 魏钜杰. 大范围地表沉降时序深度学习预测法[J]. 测绘学报, 2021, 50(3): 396-404. |
[8] | 邓开元, 任超. 多光谱光学遥感影像水体提取模型[J]. 测绘学报, 2021, 50(10): 1370-1379. |
[9] | 朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2): 135-144. |
[10] | 朱庆, 曾浩炜, 丁雨淋, 谢潇, 刘飞, 张利国, 李海峰, 胡翰, 张骏骁, 陈力, 陈琳, 张鹏程, 何华贵. 重大滑坡隐患分析方法综述[J]. 测绘学报, 2019, 48(12): 1551-1561. |
[11] | 白正伟, 张勤, 黄观文, 景策, 王家兴. “轻终端+行业云”的实时北斗滑坡监测技术[J]. 测绘学报, 2019, 48(11): 1424-1429. |
[12] | 吴文豪, 张磊, 李陶, 龙四春, 段梦, 周志伟, 祝传广, 蒋廷臣. 基于几何配准的多模式SAR影像配准及其误差分析[J]. 测绘学报, 2019, 48(11): 1439-1451. |
[13] | 王乐洋, 高华, 冯光财. 利用InSAR和GPS数据分析台湾西南两次Mw>6地震的触发关系及应力影响[J]. 测绘学报, 2019, 48(10): 1244-1253. |
[14] | 郭山川, 张绍良, 侯湖平, 朱前林, 刘润. 基于临时相干目标监测非城区地表形变[J]. 测绘学报, 2019, 48(1): 106-116. |
[15] | 唐新明, 李涛, 高小明, 陈乾福, 张祥. 雷达卫星自动成图的精密干涉测量关键技术[J]. 测绘学报, 2018, 47(6): 730-740. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||