| [1] |
FROUDE M J, PETLEY D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences, 2018, 18(8): 2161-2181.
|
| [2] |
ZHANG Shuai, LI Can, PENG Jingyu, et al. Fatal landslides in China from 1940 to 2020: occurrences and vulnerabilities[J]. Landslides, 2023, 20(6): 1243-1264.
|
| [3] |
GUZZETTI F, REICHENBACH P, CARDINALI M, et al. Probabilistic landslide hazard assessment at the basin scale[J]. Geomorphology, 2005, 72(1/2/3/4): 272-299.
|
| [4] |
许强, 朱星, 李为乐, 等. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报, 2022, 51(7): 1416-1436. DOI: .
doi: 10.11947/j.AGCS.2022.20220320
|
|
XU Qiang, ZHU Xing, LI Weile, et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. DOI: .
doi: 10.11947/j.AGCS.2022.20220320
|
| [5] |
MARJANOVIĆ M, KOVAČEVIĆ M, BAJAT B, et al. Landslide susceptibility assessment using SVM machine learning algorithm[J]. Engineering Geology, 2011, 123(3): 225-234.
|
| [6] |
刘纪平, 梁恩婕, 徐胜华, 等. 顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价[J]. 测绘学报, 2022, 51(10): 2034-2045. DOI: .
doi: 10.11947/j.AGCS.2022.20220326
|
|
LIU Jiping, LIANG Enjie, XU Shenghua, et al. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2034-2045. DOI: .
doi: 10.11947/j.AGCS.2022.20220326
|
| [7] |
王世宝, 庄建琦, 樊宏宇, 等. 基于频率比与集成学习的滑坡易发性评价:以金沙江上游巴塘—德格河段为例[J]. 工程地质学报, 2022, 30(3): 817-828.
|
|
WANG Shibao, ZHUANG Jianqi, FAN Hongyu, et al. Evaluation of landslide susceptibility based on frequency ratio and ensemble learning: taking the Batang-Dege section in the upstream of Jinsha river as an example[J]. Journal of Engineering Geology, 2022, 30(3): 817-828.
|
| [8] |
ZHOU Xinzhi, WEN Haijia, ZHANG Yalan, et al. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization[J]. Geoscience Frontiers, 2021, 12(5): 101211.
|
| [9] |
GORSEVSKI P V, BROWN M K, PANTER K, et al. Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio[J]. Landslides, 2016, 13(3): 467-484.
|
| [10] |
TIEN BUI D, TUAN T A, KLEMPE H, et al. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree[J]. Landslides, 2016, 13(2): 361-378.
|
| [11] |
LOMBARDO L, CAMA M, CONOSCENTI C, et al. Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy)[J]. Natural Hazards, 2015, 79(3): 1621-1648.
|
| [12] |
MERGHADI A, YUNUS A P, DOU Jie, et al. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance[J]. Earth-Science Reviews, 2020, 207: 103225.
|
| [13] |
AL-NAJJAR H A H, PRADHAN B. Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks[J]. Geoscience Frontiers, 2021, 12(2): 625-637.
|
| [14] |
FANG Zhice, WANG Yi, PENG Ling, et al. A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping[J]. International Journal of Geographical Information Science, 2021, 35(2): 321-347.
|
| [15] |
WANG Tianlong, ZHANG Keying, LIU Zhenghua, et al. Prediction and explanation of debris flow velocity based on multi-strategy fusion Stacking ensemble learning model[J]. Journal of Hydrology, 2024, 638: 131347.
|
| [16] |
HUANG Faming, CHEN Jiawu, LIU Weiping, et al. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold[J]. Geomorphology, 2022, 408: 108236.
|
| [17] |
LOCHE M, ALVIOLI M, MARCHESINI I, et al. Landslide susceptibility maps of Italy: lesson learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory[J]. Earth-Science Reviews, 2022, 232: 104125.
|
| [18] |
CHA Y, SHIN J, GO B, et al. An interpretable machine learning method for supporting ecosystem management: application to species distribution models of freshwater macroinvertebrates[J]. Journal of Environmental Management, 2021, 291: 112719.
|
| [19] |
WEI Jing, WANG Zhihui, LI Zhanqing, et al. Global aerosol retrieval over land from Landsat imagery integrating Transformer and Google Earth Engine[J]. Remote Sensing of Environment, 2024, 315: 114404.
|
| [20] |
董佳奇, 胡冬梅, 闫雨龙, 等. 基于可解释性机器学习的城市O3驱动因素挖掘[J]. 环境科学, 2023, 44(7): 3660-3668.
|
|
DONG Jiaqi, HU Dongmei, YAN Yulong, et al. Revealing driving factors of urban O3 based on explainable machine learning[J]. Environmental Science, 2023, 44(7): 3660-3668.
|
| [21] |
YANG Changlan, GUAN Xuefeng, XU Qingyang, et al. How can SHAP (shapley additive explanations) interpretations improve deep learning based urban cellular automata model?[J]. Computers, Environment and Urban Systems, 2024, 111: 102133.
|
| [22] |
CHU Wenhao, ZHANG Chunxiao, LI Heng, et al. SHAP-powered insights into spatiotemporal effects: unlocking explainable Bayesian-neural-network urban flood forecasting[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 131: 103972.
|
| [23] |
FENG Zezheng, JIANG Yifan, WANG Hongjun, et al. TrafPS: a shapley-based visual analytics approach to interpret traffic[J]. Computational Visual Media, 2024, 10(6): 1101-1119.
|
| [24] |
KANG Y, KIM M, KANG E, et al. Improved retrievals of aerosol optical depth and fine mode fraction from GOCI geostationary satellite data using machine learning over East Asia[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183: 253-268.
|
| [25] |
罗路广, 裴向军, 崔圣华, 等. 九寨沟地震滑坡易发性评价因子组合选取研究[J]. 岩石力学与工程学报, 2021, 40(11): 2306-2319.
|
|
LUO Luguang, PEI Xiangjun, CUI Shenghua, et al. Combined selection of susceptibility assessment factors for Jiuzhaigou earthquake-induced landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(11): 2306-2319.
|
| [26] |
张钟远, 邓明国, 徐世光, 等. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报, 2022, 41(1): 157-171.
|
|
ZHANG Zhongyuan, DENG Mingguo, XU Shiguang, et al. Comparison of landslide susceptibility assessment models in Zhenkang County, Yunnan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 157-171.
|
| [27] |
LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]//Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach: [s.n.], 2017.
|
| [28] |
HUANG Faming, MAO Daxiong, JIANG Shuihua, et al. Uncertainties in landslide susceptibility prediction modeling: a review on the incompleteness of landslide inventory and its influence rules[J]. Geoscience Frontiers, 2024, 15(6): 101886.
|
| [29] |
OTHMAN A A, GLOAGUEN R, ANDREANI L, et al. Improving landslide susceptibility mapping using morphometric features in the Mawat area, Kurdistan Region, NE Iraq: comparison of different statistical models[J]. Geomorphology, 2018, 319: 147-160.
|