测绘学报 ›› 2025, Vol. 54 ›› Issue (2): 308-320.doi: 10.11947/j.AGCS.2025.20240094

• 摄影测量学与遥感 • 上一篇    

顾及正负样本优化的滑坡易发性评价

刘雅婷(), 陈传法(), 何青鑫, 李坤禹   

  1. 山东科技大学测绘与空间信息学院,山东 青岛 266590
  • 收稿日期:2024-03-08 发布日期:2025-03-11
  • 通讯作者: 陈传法 E-mail:chlyt2017@163.com;chencf@sdust.edu.cn
  • 作者简介:刘雅婷(1998—),女,硕士生,研究方向为地质灾害早期识别和风险分析。 E-mail:chlyt2017@163.com
  • 基金资助:
    国家自然科学基金(42271438);山东省自然科学基金(ZR2024MD040)

Landslide susceptibility evaluation considering positive and negative sample optimization

Yating LIU(), Chuanfa CHEN(), Qingxin HE, Kunyu LI   

  1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
  • Received:2024-03-08 Published:2025-03-11
  • Contact: Chuanfa CHEN E-mail:chlyt2017@163.com;chencf@sdust.edu.cn
  • About author:LIU Yating (1998—), female, postgraduate, majors in early identification and risk analysis of geological hazards. E-mail: chlyt2017@163.com
  • Supported by:
    The National Natural Science Foundation of China(42271438);Shandong Provincial Natural Science Foundation, China(ZR2024MD040)

摘要:

在滑坡易发性评价中,样本类别的不平衡容易导致评价结果偏向多数类样本,而样本优化能够有效解决由此引发的滑坡预测偏差。然而,传统样本优化方法通常聚焦于正负样本在特征空间的差异性,而忽略了正负样本间的地理位置差异及同类特征因子间的复杂非线性关系,容易导致选取的样本存在片面性和单一性等问题。为此,本文提出了一种顾及样本优化的滑坡易发性评价方法。该方法首先设计了顾及空间相关性的地理环境相似性准则进行欠采样,然后构建了一种非线性合成过采样法进行过采样,最后采用了多粒度级联森林模型进行滑坡易发性预测。本文以宜宾市为研究区,借助统计学指标从模型精度验证和易发性分区统计两个方面评估模型性能,并将本文方法与9种传统方法对比表明:在面对不同程度的正样本量缺失条件下,本文方法的预测精度始终最高,并且所划分的易发区更符合实际滑坡灾害分布状况。

关键词: 样本优化, 滑坡易发性, 空间相关性, 地理环境相似性, 非线性合成过采样, 多粒度级联森林

Abstract:

In the domain of landslide susceptibility evaluation, the prevalent issue of sample category imbalance often skews evaluation outcomes in favor of the majority class, thereby undermining the accuracy of landslide forecasts. Sample optimization emerges as a pivotal solution to mitigate these biases. Traditional approaches to sample optimization predominantly concentrate on distinguishing the characteristic disparities between positive and negative samples within the feature space, overlooking the critical aspects of geographical disparities among samples and the intricate nonlinear interrelations between characteristic factors and landslide occurrences. Such oversight may result in a biased and oversimplified representation of sample characteristics. Addressing this gap, the present study introduces an advanced landslide susceptibility evaluation methodology that integrates sample optimization with a nuanced consideration of spatial and feature dynamics. Initially, the method employs an undersampling strategy based on geographical environment similarity criteria that incorporate spatial correlation. Subsequently, it innovates a nonlinear synthetic oversampling technique to augment sample diversity. The analytical process culminates in the application of a multi-grained cascade forest model for the prediction of landslide susceptibility. Focusing on Yibin city as the empirical case study, the efficacy of the proposed method is rigorously validated through statistical metrics, encompassing both model precision verification and susceptibility zoning analysis. Comparative evaluation against nine established methodologies reveals that our proposed framework consistently surpasses in predictive accuracy across varied scenarios of positive sample deficiency, thereby offering susceptibility zones that exhibit a higher degree of concordance with the real-world spatial distribution of landslide incidents.

Key words: sample optimization, landslide susceptibility, spatial correlation, geographical environment similarity, nonlinear synthetic oversampling, multi-grained cascade forest

中图分类号: