测绘学报 ›› 2025, Vol. 54 ›› Issue (2): 308-320.doi: 10.11947/j.AGCS.2025.20240094
• 摄影测量学与遥感 • 上一篇
收稿日期:
2024-03-08
发布日期:
2025-03-11
通讯作者:
陈传法
E-mail:chlyt2017@163.com;chencf@sdust.edu.cn
作者简介:
刘雅婷(1998—),女,硕士生,研究方向为地质灾害早期识别和风险分析。 E-mail:chlyt2017@163.com
基金资助:
Yating LIU(), Chuanfa CHEN(
), Qingxin HE, Kunyu LI
Received:
2024-03-08
Published:
2025-03-11
Contact:
Chuanfa CHEN
E-mail:chlyt2017@163.com;chencf@sdust.edu.cn
About author:
LIU Yating (1998—), female, postgraduate, majors in early identification and risk analysis of geological hazards. E-mail: chlyt2017@163.com
Supported by:
摘要:
在滑坡易发性评价中,样本类别的不平衡容易导致评价结果偏向多数类样本,而样本优化能够有效解决由此引发的滑坡预测偏差。然而,传统样本优化方法通常聚焦于正负样本在特征空间的差异性,而忽略了正负样本间的地理位置差异及同类特征因子间的复杂非线性关系,容易导致选取的样本存在片面性和单一性等问题。为此,本文提出了一种顾及样本优化的滑坡易发性评价方法。该方法首先设计了顾及空间相关性的地理环境相似性准则进行欠采样,然后构建了一种非线性合成过采样法进行过采样,最后采用了多粒度级联森林模型进行滑坡易发性预测。本文以宜宾市为研究区,借助统计学指标从模型精度验证和易发性分区统计两个方面评估模型性能,并将本文方法与9种传统方法对比表明:在面对不同程度的正样本量缺失条件下,本文方法的预测精度始终最高,并且所划分的易发区更符合实际滑坡灾害分布状况。
中图分类号:
刘雅婷, 陈传法, 何青鑫, 李坤禹. 顾及正负样本优化的滑坡易发性评价[J]. 测绘学报, 2025, 54(2): 308-320.
Yating LIU, Chuanfa CHEN, Qingxin HE, Kunyu LI. Landslide susceptibility evaluation considering positive and negative sample optimization[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 308-320.
表1
数据介绍"
分类 | 特征因子 | 分辨率 | 数据源 |
---|---|---|---|
地形地貌 | 高程、坡度、坡向、平面曲率、剖面曲率、TWI | 30 m | |
地质因子 | 岩性 | 1∶50 000 | |
断层距离 | 1∶50 000 | ||
PGA | 1∶4 000 000 | ||
水文环境 | NDVI | 30 m | |
年降雨量 | 30 m | ||
河流距离 | 1∶500 000 | ||
土地利用 | 10 m | ||
人类工程 | 道路距离 | 1∶500 000 | |
POI密度 | 1∶50 000 |
[1] |
吴琼, 葛大庆, 于峻川, 等. 广域滑坡灾害隐患InSAR显著性形变区深度学习识别技术[J]. 测绘学报, 2022, 51(10): 2046-2055. DOI:.
doi: 10.11947/j.AGCS.2022.20220303 |
WU Qiong, GE Daqing, YU Junchuan, et al. Deep learning identification technology of InSAR significant deformation zone of potential landslide hazard at large scale[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2046-2055. DOI:.
doi: 10.11947/j.AGCS.2022.20220303 |
|
[2] | 中华人民共和国自然资源部. 全国地质灾害防治“十四五”规划[EB/OL]. [2024-02-02]. http://gi.mnr.gov.cn/202301/t20230103_2772003.html. |
Ministry of Natural Resources of the People's Republic of China. The 14th five-year plan for geological disaster prevention and control[EB/OL]. [2024-02-02]. http://gi.mnr.gov.cn/202301/t20230103_2772003.html. | |
[3] |
许强, 朱星, 李为乐, 等. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报, 2022, 51(7): 1416-1436. DOI:.
doi: 10.11947/j.AGCS.2022.20220320 |
XU Qiang, ZHU Xing, LI Weile, et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. DOI:.
doi: 10.11947/j.AGCS.2022.20220320 |
|
[4] | 朱庆, 张曼迪, 丁雨淋, 等. 环境因子空间特征约束的区域滑坡敏感性模糊逻辑分析方法[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1431-1440. |
ZHU Qing, ZHANG Mandi, DING Yulin, et al. Fuzzy logic approach for regional landslide susceptibility analysis constrained by spatial characteristics of environmental factors[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1431-1440. | |
[5] | 朱阿兴, 裴韬, 乔建平, 等. 基于专家知识的滑坡危险性模糊评估方法[J]. 地理科学进展, 2006, 25(4): 1-12. |
ZHU Axing, PEI Tao, QIAO Jianping, et al. A landslide susceptibility mapping approach using expert knowledge and fuzzy logic under GIS[J]. Progress in Geography, 2006, 25(4): 1-12. | |
[6] | ZHU Axing, MIAO Yamin, WANG Rongxun, et al. A comparative study of an expert knowledge-based model and two data-driven models for landslide susceptibility mapping[J]. CATENA, 2018, 166: 317-327. |
[7] | REICHENBACH P, ROSSI M, MALAMUD B D, et al. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews, 2018, 180: 60-91. |
[8] | ACHU A L, AJU C D, DI NAPOLI M, et al. Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis[J]. Geoscience Frontiers, 2023, 14(6): 101657. |
[9] | GOETZ J N, BRENNING A, PETSCHKO H, et al. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling[J]. Computers & Geosciences, 2015, 81: 1-11. |
[10] | CHANG Zhilu, HUANG Jinsong, HUANG Faming, et al. Uncertainty analysis of non-landslide sample selection in landslide susceptibility prediction using slope unit-based machine learning models[J]. Gondwana Research, 2023, 117: 307-320. |
[11] |
朱庆, 曾浩炜, 丁雨淋, 等. 重大滑坡隐患分析方法综述[J]. 测绘学报, 2019, 48(12): 1551-1561. DOI:.
doi: 10.11947/j.AGCS.2019.20190452 |
ZHU Qing, ZENG Haowei, DING Yulin, et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1551-1561. DOI:.
doi: 10.11947/j.AGCS.2019.20190452 |
|
[12] | HU Xudong, ZHANG Han, MEI Hongbo, et al. Landslide susceptibility mapping using the stacking ensemble machine learning method in Lushui, Southwest China[J]. Applied Sciences, 2020, 10(11): 4016. |
[13] | 童莹萍, 冯伟, 宋怡佳, 等. 面向不平衡高光谱遥感分类的SMOTE和旋转森林动态集成算法[J]. 遥感学报, 2022, 26(11): 2369-2381. |
TONG Yingping, FENG Wei, SONG Yijia, et al. Dynamic ensemble algorithm of SMOTE and rotation forest for imbalanced hyperspectral remote sensing classification[J]. National Remote Sensing Bulletin, 2022, 26(11): 2369-2381. | |
[14] | ZHAO Zhongguo, XU Zhangyan, HU Chuli, et al. Geographically weighted neural network considering spatial heterogeneity for landslide susceptibility mapping: a case study of Yichang city, China[J]. CATENA, 2024, 234: 107590. |
[15] | 陈飞, 蔡超, 李小双, 等. 基于信息量与神经网络模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2020, 39(S1): 2859-2870. |
CHEN Fei, CAI Chao, LI Xiaoshuang, et al. Evaluation of landslide susceptibility based on information volume and neural network model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2859-2870. | |
[16] | 李梦. 基于SOM-CNN的陕西省滑坡易发性分析[D]. 武汉: 武汉大学, 2020. |
LI Meng. Analysis of landslide susceptibility in Shaanxi province based on SOM-CNN[D]. Wuhan: Wuhan University, 2020. | |
[17] | HONG Haoyuan, MIAO Yamin, LIU Junzhi, et al. Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping[J]. CATENA, 2019, 176: 45-64. |
[18] | 缪亚敏, 朱阿兴, 杨琳, 等. 滑坡危险度评价对BCS负样本采样的敏感性[J]. 山地学报, 2016, 34(4): 432-441. |
MIAO Yamin, ZHU Axing, YANG Lin, et al. Sensitivity of BCS for sampling landslide absence data in landslide susceptibility assessment[J]. Mountain Research, 2016, 34(4): 432-441. | |
[19] | 黄发明, 曾诗怡, 姚池, 等. 滑坡易发性预测建模的不确定性:不同“非滑坡样本”选择方式的影响[J]. 工程科学与技术, 2024, 56(1): 169-182. |
HUANG Faming, ZENG Shiyi, YAO Chi, et al. Uncertainties of landslide susceptibility prediction modeling: influence of different selection methods of “non-landslide samples”[J]. Advanced Engineering Sciences, 2024, 56(1): 169-182. | |
[20] | WANG Yumiao, WU Xueling, CHEN Zhangjian, et al. Optimizing the predictive ability of machine learning methods for landslide susceptibility mapping using SMOTE for Lishui city in Zhejiang province, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(3): 368. |
[21] | ZHANG Shuhao, YU Peiqiao. Seismic landslide susceptibility assessment based on ADASYN-LDA model[J]. IOP Conference Series: Earth and Environmental Science, 2020, 525(1): 012087. |
[22] | ZHU Tuanfei, LIN Yaping, LIU Yonghe. Improving interpolation-based oversampling for imbalanced data learning[J]. Knowledge-Based Systems, 2020, 187: 104826. |
[23] | 吴宏阳, 周超, 梁鑫, 等. 基于样本优化策略研究的滑坡易发性评价[J]. 武汉大学学报(信息科学版), 2024, 49(8): 1492-1502. |
WU Hongyang, ZHOU Chao, LIANG Xin, et al. Evaluation of landslide susceptibility based on sample optimization strategy research[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1492-1502. | |
[24] | 朱阿兴, 闾国年, 周成虎, 等. 地理相似性:地理学的第三定律?[J]. 地球信息科学学报, 2020, 22(4): 673-679. |
ZHU Axing, LÜ Guonian, ZHOU Chenghu, et al. Geographic similarity: third law of geography?[J]. Journal of Geo-information Science, 2020, 22(4): 673-679. | |
[25] | SILVERMAN B W. Density estimation for statistics and data analysis[M]. New York: Routledge, 2017. |
[26] | REYNOLDS A P, RICHARDS G, DE LA IGLESIA B, et al. Clustering rules: a comparison of partitioning and hierarchical clustering algorithms[J]. Journal of Mathematical Modelling and Algorithms, 2006, 5(4): 475-504. |
[27] | ZHOU Zhihua, FENG Ji. Deep forest[J]. National Science Review, 2019, 6(1): 74-86. |
[28] | 王琛. 基于地质灾害的宜宾市乡镇聚落选址适宜性研究[D]. 成都: 西华大学, 2022. |
WANG Chen. Research on the suitability of site selection of township settlements in Yibin city based on geological disasters[D]. Chengdu: Xihua University, 2022. | |
[29] | 武雪玲, 任福, 牛瑞卿, 等. 斜坡单元支持下的滑坡易发性评价支持向量机模型[J]. 武汉大学学报(信息科学版), 2013, 38(12): 1499-1503. |
WU Xueling, REN Fu, NIU Ruiqing, et al. Landslide spatial prediction based on slopeunits and support vector machines[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1499-1503. | |
[30] | ZHOU Chao, YIN Kunlong, CAO Ying, et al. Landslide susceptibility modeling applying machine learning methods: a case study from Longju in the Three Gorges Reservoir area, China[J]. Computers & Geosciences, 2018, 112: 23-37. |
[31] | 刘坚, 李树林, 陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报(信息科学版), 2018, 43(7): 1085-1091. |
LIU Jian, LI Shulin, CHEN Tao. Landslide susceptibility assesment based on optimized random forest model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1085-1091. | |
[32] |
刘纪平, 梁恩婕, 徐胜华, 等. 顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价[J]. 测绘学报, 2022, 51(10): 2034-2045. DOI:.
doi: 10.11947/j.AGCS.2022.20220326 |
LIU Jiping, LIANG Enjie, XU Shenghua, et al. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2034-2045. DOI:.
doi: 10.11947/j.AGCS.2022.20220326 |
|
[33] |
刘雅婷, 陈传法. 顾及空间异质性和特征优选的滑坡易发性评价方法[J]. 测绘学报, 2024, 53(7): 1417-1428. DOI:.
doi: 10.11947/j.AGCS.2024.20230162 |
LIU Yating, CHEN Chuanfa. Landslide susceptibility evaluation method considering spatial heterogeneity and feature selection[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1417-1428. DOI:.
doi: 10.11947/j.AGCS.2024.20230162 |
|
[34] | SHARMA N, SAHARIA M, RAMANA G V. High resolution landslide susceptibility mapping using ensemble machine learning and geospatial big data[J]. CATENA, 2024, 235: 107653. |
[1] | 吕继超, 张瑞, 何旭, 洪瑞凯, 沙马阿各, 刘国祥. 广域滑坡易发性多分支网络评估及动态变化分析[J]. 测绘学报, 2025, 54(1): 104-122. |
[2] | 刘雅婷, 陈传法. 顾及空间异质性和特征优选的滑坡易发性评价方法[J]. 测绘学报, 2024, 53(7): 1417-1428. |
[3] | 罗袆沅, 蒋亚楠, 许强, 廖露, 燕翱翔, 刘陈伟. 基于深度学习的滑坡位移时空预测[J]. 测绘学报, 2022, 51(10): 2160-2170. |
[4] | 袁博. 基于混合像元空间与谱间相关性模型的NMF线性盲解混[J]. 测绘学报, 2019, 48(9): 1151-1160. |
[5] | 刘照欣, 赵辽英, 厉小润, 陈淑涵. 高光谱亚像元定位的线特征探测法[J]. 测绘学报, 2019, 48(11): 1464-1474. |
[6] | 张盈, 张景雄. 顾及空间相关性的遥感影像信息量的度量方法[J]. 测绘学报, 2015, 44(10): 1117-1124. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 34
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 60
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||