[1] 王毓乾. 基于空间-光谱分析的高光谱遥感影像稀疏解混研究[J]. 测绘学报, 2017, 46(8):1072. DOI:10.11947/j.AGCS.2017.20170167. WANG Yuqian. Hyperspectral imagery sparse unmixing based on spatial and spectral analysis[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8):1072. DOI:10.11947/j.AGCS.2017.20170167. [2] 张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报, 2017, 46(10):1447-1459. DOI:10.11947/j.AGCS.2017.20170340. ZHANG Liangpei, WU Chen. Advance and future development of change detection for multi-temporal remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1447-1459. DOI:10.11947/j.AGCS.2017.20170340. [3] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755):788-791. [4] XU Yifei, DENG Shuiguang, LI Xiaoli, et al. A sparse unmixing model based on NMF and its application in Raman image[J]. Neurocomputing, 2016(207):120-130. [5] KAROUI M S, DEVILLE Y, HOSSEINI S, et al. Blind spatial unmixing of multispectral images:new methods combining sparse component analysis, clustering and non-negativity constraints[J]. Pattern Recognition, 2012, 45(12):4263-4278. [6] MUSHTAQ Q, HAQ I U, AHMAD M, et al. Hyperspectral blind unmixing and multiple target detection using linear mixture model[J]. Advanced Materials Research, 2012(488-489):1224-1228. [7] 施蓓琦, 刘春, 孙伟伟, 等. 应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择[J]. 测绘学报, 2013, 42(3):351-358, 366. SHI Beiqi, LIU Chun, SUN Weiwei, et al. Sparse nonnegative matrix factorization for hyperspectral optimal band selection[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3):351-358, 366. [8] 张盈, 张景雄. 顾及空间相关性的遥感影像信息量的度量方法[J]. 测绘学报, 2015, 44(10):1117-1124. DOI:10.11947/j.AGCS.2015.20140417. ZHANG Ying, ZHANG Jingxiong. Measure of information content of remotely sensed images accounting for spatial correlation[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10):1117-1124. DOI:10.11947/j.AGCS.2015.20140417. [9] 孔繁锵, 卞陈鼎, 李云松, 等. 非凸稀疏低秩约束的高光谱解混方法[J]. 西安电子科技大学学报(自然科学版), 2016, 43(6):116-121. KONG Fanqiang, BIAN Chending, LI Yunsong, et al. Hyperspectral unmixing method based on the non-convex sparse and low-rank constraints[J]. Journal of Xidian University, 2016, 43(6):116-121. [10] JIA Sen, QIAN Yuntao. Constrained nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(l):161-173. [11] MIAO Lidan, QI Hairong. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 15(8):765-777. [12] 詹锡兰, 吴波. 一种基于高斯马尔可夫随机场模型的混合像元分解方法[J]. 福州大学学报(自然科学版), 2011, 39(1):60-66. ZHAN Xilan, WU Bo. A method of spectral mixture analysis based on Gaussian Markov random field model[J]. Journal of Fuzhou University (Natural Science Edition), 2011, 39(1):60-66. [13] 刘建军, 吴泽彬, 韦志辉, 等. 基于空间相关性约束稀疏表示的高光谱图像分类[J]. 电子与信息学报, 2012, 34(11):2666-2671. LIU Jianjun, WU Zebin, WEI Zhihui, et al. Spatial correlation constrained sparse representation for hyperspectral image classification[J]. Journal of Electronics & Information Technology, 2012, 34(11):2666-2671. [14] CHEN Xiawei, YU Jing, SUN Weidong. Area-correlated spectral unmixing based on Bayesian nonnegative matrix factorization[J]. Open Journal of Applied Sciences, 2013, 3(1):41-46. [15] 王楠, 张良培, 杜博. 最小光谱相关约束NMF的高光谱遥感图像混合像元分解[J]. 武汉大学学报(信息科学版), 2014, 39(1):22-26. WANG Nan, ZHANG Liangpei, DU Bo. Minimum spectral correlation constraint algorithm based on non-negative matrix factorization for hyperspectral unmixing[J]. Geomatics and Information Science of Wuhan University, 2014, 39(1):22-26. [16] 许宁, 尤红建, 耿修瑞, 等. 基于光谱相似度量的高光谱图像多任务联合稀疏光谱解混方法[J]. 电子与信息学报, 2016, 38(11):2701-2708. XU Ning, YOU Hongjian, GENG Xiurui, et al. Multi-task jointly sparse spectral unmixing method based on spectral similarity measure of hyperspectral imagery[J]. Journal of Electronics & Information Technology, 2016, 38(11):2701-2708. [17] CHEN Bolin, LI Min, WANG Jianxin, et al. Disease gene identification by using graph kernels and Markov random fields[J]. Science China Life Sciences, 2014, 57(11):1054-1063. [18] 尤传雨, 刘文波, 常军. 基于复杂追踪理论的结构模态参数识别[J]. 苏州科技学院学报(工程技术版), 2016, 29(2):38-42, 50. YOU Chuanyu, LIU Wenbo, CHANG Jun. Structural model parameter identification based on complexity pursuit[J]. Journal of Suzhou University of Science and Technology (Engineering and Technology), 2016, 29(2):38-42, 50 [19] HOYER P O. Non-negative matrix factorization with sparseness constraints[J]. The Journal of Machine Learning Research, 2004(5):1457-1469. [20] YIN Gang, BUI T. Stochastic systems arising from Markov modulated empirical measures[J]. Journal of Systems Science and Complexity, 2017, 30(5):999-1011. [21] DENG Huawu, CLAUSI D A. Unsupervised image segmentation using a simple MRF model with a new implementation scheme[J]. Pattern Recognition, 2004, 37(12):2323-2335. [22] 亓琳, 史泽林. 一种基于DA-GMRF的无监督图像分割方法[J]. 光电工程, 2007, 34(10):88-92. QI Lin, SHI Zelin. Unsupervised image segmentation based on DA-GMRF[J]. Opto-Electronic Engineering, 2007, 34(10):88-92. [23] BIOUCAS-DIAS J M, NASCIMENTO J M P. Hyperspectral subspace identification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8):2435-2445. [24] GENG Xiurui, JI Luyan, SUN Kang. Non-negative matrix factorization based unmixing for principal component transformed hyperspectral data[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(5):403-412. [25] 吴金彪. D-N交替迭代法及其收敛性分析[J]. 数值计算与计算机应用, 2002, 23(2):121-130. WU Jinbiao. D-N commutative method and its convergence[J]. Journal on Numerical Methods and Computer Applications, 2002, 23(2):121-130. |