测绘学报 ›› 2019, Vol. 48 ›› Issue (9): 1141-1150.doi: 10.11947/j.AGCS.2019.20180247

• 摄影测量学与遥感 • 上一篇    下一篇

基于深度学习的航空遥感影像密集匹配

刘瑾, 季顺平   

  1. 武汉大学遥感信息工程学院, 湖北 武汉 430079
  • 收稿日期:2018-05-26 修回日期:2018-12-04 出版日期:2019-09-20 发布日期:2019-09-25
  • 通讯作者: 季顺平 E-mail:jishunping@whu.edu.cn
  • 作者简介:刘瑾(1996-),女,硕士生,研究方向为基于深度学习的密集匹配。
  • 基金资助:
    国家自然科学基金(41471288)

Deep learning based dense matching for aerial remote sensing images

LIU Jin, JI Shunping   

  1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
  • Received:2018-05-26 Revised:2018-12-04 Online:2019-09-20 Published:2019-09-25
  • Supported by:
    The National Natural Science Foundation of China (No. 41471288)

摘要: 本文探讨了深度学习在航空影像密集匹配中的性能,并与经典方法进行了比较,对模型泛化能力进行了评估。首先,实现了MC-CNN(matching cost convolutional neural network)、GC-Net(geometry and context network)、DispNet(disparity estimation network)3种代表性卷积神经元网络在航空立体像对上的训练和测试,并与传统方法SGM(semi-global matching)和商业软件SURE进行了比较。其次,利用直接迁移学习方法,评估了各模型在不同数据集间的泛化能力。最后,利用预训练模型和少量目标数据集样本,评估了模型微调的效果。试验包含3套航空影像、2套开源街景影像。试验表明:①与传统的遥感影像密集匹配方法相比,目前深度学习方法略有优势;②GC-Net与MC-CNN表现了良好的泛化能力,在开源数据集上训练的模型可以直接应用于遥感影像,且3PE(3-pixel-error)精度没有明显下降;③在训练样本不足时,利用预训练模型做初值并进行参数微调可以得到比直接训练更好的结果。

关键词: 立体匹配, 密集匹配, 航空影像, 卷积神经元网络, 深度学习

Abstract: This work studied that the application of deep learning based stereo methods in aerial remote sensing images, including its performance evaluation, the comparison with classical methods and generalization ability estimation.Three convolution neural networks are applied, MC-CNN(matching cost convolutional neural network), GC-Net(geometry and context network) and DispNet(disparity estimation network), on aerial stereo image pairs. The results are compared with SGM (semi-global matching) and a commercial software SURE. Secondly, the generalization ability of the MC-CNN and GC-Net are evaluated with models pretrained on other datasets. Finally, fine tuning on a small number of target training data with pretrained models are compared to direct training. Three sets of aerial images and two open-source street data sets are used for test. Experiments show that:firstly, deep learning methods perform slightly better than traditional methods; secondly, both GC-Net and MC-CNN have demonstrated good generalization ability, and can get satisfactory 3PE (3-pixel-error) results on aerial images using a model pretrained on available stereo benchmarks; thirdly, when the training samples in target dataset are insufficient, the strategy of fine-tuning on a pretrained model can improve the effect of direct training.

Key words: stereo matching, dense matching, aerial images, convolutional neural network, deep learning

中图分类号: