测绘学报 ›› 2022, Vol. 51 ›› Issue (7): 1437-1457.doi: 10.11947/j.AGCS.2022.20220130
张力1, 刘玉轩1, 孙洋杰2, 蓝朝桢3, 艾海滨1, 樊仲藜1
收稿日期:
2022-02-24
修回日期:
2022-05-27
发布日期:
2022-08-13
通讯作者:
刘玉轩
E-mail:yxliu@casm.ac.cn
作者简介:
张力(1970-),男,研究员,主要从事摄影测量、计算机视觉、遥感数据处理相关研究。E-mail:zhangl@casm.ac.cn
基金资助:
ZHANG Li1, LIU Yuxuan1, SUN Yangjie2, LAN Chaozhen3, AI Haibin1, FAN Zhongli1
Received:
2022-02-24
Revised:
2022-05-27
Published:
2022-08-13
Supported by:
摘要: 航空摄影测量作为摄影测量学最重要的分支之一,近年来得到了长足的发展。倾斜航空摄影和无人机摄影测量等多种新作业模式的出现,给传统航空摄影测量带来新的挑战的同时也催生出了诸多新的解决方案。此外,人工智能领域计算机视觉技术和深度学习技术中的新理论、新方法不断融入航空摄影测量中,推动航空摄影测量向智能化、自动化方向发展。当代航空摄影测量学已经是多种传感器融合、多种数据采集方式结合、传统摄影测量和人工智能技术交叉的产物。三维重建是航空摄影测量的核心问题之一。本文阐述了当代航空摄影三维重建技术的发展趋势和存在的问题,着重从航空影像的同名连接点自动提取与匹配、区域网平差、密集匹配和单体化建模4个方面对当前的研究现状进行了总结讨论,给出了当前国内外主流的航空影像摄影测量处理框架。
中图分类号:
张力, 刘玉轩, 孙洋杰, 蓝朝桢, 艾海滨, 樊仲藜. 数字航空摄影三维重建理论与技术发展综述[J]. 测绘学报, 2022, 51(7): 1437-1457.
ZHANG Li, LIU Yuxuan, SUN Yangjie, LAN Chaozhen, AI Haibin, FAN Zhongli. A review of developments in the theory and technology of three-dimensional reconstruction in digital aerial photogrammetry[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1437-1457.
[1] 李德仁.摄影测量与遥感学的发展展望[J].武汉大学学报(信息科学版), 2008, 33(12):1211-1215. LI Deren. Development prospect of photogrammetry and remote sensing[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12):1211-1215. [2] YAO H, QIN R, CHEN X. Unmanned aerial vehicle for remote sensing applications-a review[J]. Remote Sensing, 2019, 11(12):1443. [3] 何佳男.贴近摄影测量及其关键技术研究[D].武汉:武汉大学, 2019. HE Jianan. Nap-of-the-object photogrammetry and its key techniques[D]. Wuhan:Wuhan University, 2019. [4] 李清泉,黄惠,姜三,等.优视摄影测量方法及精度分析[J].测绘学报, 2022, 51(6):996-1007. DOI:10.11947/j.AGCS.2022.20210685. LI Qingquan, HUANG Hui, JIANG San, et al.Optimized views photogrammetry and its precision analysis[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):996-1007. DOI:10.11947/j.AGCS.2022.20210685. [5] HARTLEY R I, MUNDY J L. Relationship between photogrammmetry and computer vision[C]//Proceedings of 1993 Optical Engineering and Photonics in Aerospace Sensing. Orlando, FL, USA:SPIE,1993, 1944:92-105. [6] FÖRSTNER W, WROBEL B P. Photogrammetric computer vision[M]. Zurich:Springer International Publishing Switzerland, 2016. [7] 龚健雅,季顺平.从摄影测量到计算机视觉[J].武汉大学学报(信息科学版), 2017, 42(11):1518-1522, 1615. GONG Jianya, JI Shunping. From photogrammetry to computer vision[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11):1518-1522, 1615. [8] QIN Rongjun, GRUEN A. The role of machine intelligence in photogrammetric 3D modeling-an overview and perspectives[J]. International Journal of Digital Earth, 2021, 14(1):15-31. [9] 龚健雅,季顺平.摄影测量与深度学习[J].测绘学报, 2018, 47(6):693-704. DOI:10.11947/j.AGCS.2018.20170640. GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):693-704. DOI:10.11947/j.AGCS.2018.20170640. [10] JORDAN M I, MITCHELL T M. Machine learning:trends, perspectives, and prospects[J]. Science, 2015, 349(6245):255-260. [11] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. MIT:MIT Press, 2016. [12] HARRIS C, STEPHENS M. A combined corner and edge detector[C]//Proceedings of 1988 Alvey Vision Conference. Manchester,UK:Alvey Vision Club, 1988. [13] SMITH S M,BRADY J M. SUSAN:a new approach to low level image processing[J]. International Journal of Computer Vision, 1997, 23(1):45-78. [14] ALAHI A, ORTIZ R, VANDERGHEYNST P. FREAK:fast retina keypoint[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition.Providence, RI, USA:IEEE, 2012:510-517. [15] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB:an efficient alternative to SIFT or SURF[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011:2564-2571. [16] LOWE D G. Distinctive image features[JP1] from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [17] BAY H, TUYTELAARS T,[JP1] GOOL L V. SURF:Speeded up robust features[C]//Proceedings of the 9th European conference on Computer Vision. Heidelberg, Berlin,Germany:Springer-Verlag, 2006:404-417. [18] SEDAGHAT A, MOKHTARZADE M, EBADI H. Uniform robust scale-invariant feature matching for optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4516-4527. [19] FERNANDEZ P, BARTOLI A, DAAVISON A J. KAZE features[C]//Proceedings of 2012 European Conference on Computer Vision. Firenze, Italy:IEEE,2012. [20] ALCANTARILLA P, NUEVO J, BARTOLI A. Fast explicit diffusion for accelerated features in nonlinear scale spaces[C]//Proceedings of 2013 British Machine Vision Conference. Bristol, UK:British Machine Vision Association, 2013. [21] TUYTELAARS T, MIKOLAJCZYK K. Local invariant feature detectors:a survey[J]. Foundations and Trends® in Computer Graphics and Vision, 2007, 3(3):177-280. [22] HOSNI A, BLEYER M, GELAUTZ M. Secrets of adaptive support weight techniques for local stereo matching[J]. Computer Vision and Image Understanding, 2013, 117(6):620-632. [23] SATOH S. Simple low-[JP1] dimensional features approximating NCC-based image matching[J]. Pattern Recognition Letters, 2011, 32(14):1902-1911. [24] MEI Xing, SUN Xun, ZHOU Mingcai, et al. On building an accurate stereo matching system on graphics hardware[C]//Proceedings of 2011 IEEE International Conference on Computer Vision Workshops.Barcelona, Spain:IEEE, 2011:467-474. [25] VIOLA P, WELLS W M. Alignment by maximization of mutual information[J]. International Journal of Computer Vision, 1997, 24(2):137-154. [26] KE Yan, SUKTHANKAR R. PCA-SIFT:a more distinctive representation for local image descriptors[C]//Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington, DC, USA:IEEE, 2004:II. [27] ABDEL-HAKIM A E, FARAG A A. CSIFT:a SIFT descriptor with color invariant characteristics[C]//Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA:IEEE, 2006:1978-1983. [28] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987. [29] CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF:binary robust independent elementary features[C]//Proceedings of 2010 Computer Vision. Berlin, Heidelberg,Germany:Springer, 2010:778-792. [30] ALAHI A, ORTIZ R, VANDERGHEYNST P. FREAK:fast retina keypoint[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition.Providence, RI, USA:IEEE, 2012:510-517. [31] FISCHLER M, BOLLES R. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6):381-395. [32] LIU Yuxuan, MO Fan, TAO Pengjie. Matching multi-source optical satellite imagery exploiting a multi-stage approach[J]. Remote Sensing, 2017, 9(12):1249. [33] FAN Zhongli, LIU Yuxian, LIU Yuxuan, et al. 3MRS:an effective coarse-to-fine matching method for multimodal remote sensing imagery[J]. Remote Sensing, 2022, 14(3):478. [34] MATAS J, CHUM O, URBAN M, et al. Robust wide-baseline stereo from maximally stable extremal regions[J]. Image and Vision Computing, 2004, 22(10):761-767. [35] LIU Xiaoqing, SAMARABANDU J.[JP1] Multiscale edge-based text extraction from complex images[C]//Proceedings of 2006 IEEE International Conference on Multimedia and Expo. Toronto, ON, Canada:IEEE, 2006:1721-1724. [36] TUYTELAARS T, VAN GOOL L. Matching widely separated views based on affine invariant regions[J]. International Journal of Computer Vision, 2004, 59(1):61-85. [37] 姚国标,张力,艾海滨,等.宽基线倾斜影像匹配关键算法与应用[M].北京:测绘出版社, 2021. YAO Guobiao, ZHANG Li, AI Haibin, et al. Study on the key matching algorithms for wide-baseline oblique stereo images and its application[M]. Bejing:Surveying and Mapping Press, 2021. [38] MOREL J M, YU Guoshen. ASIFT:a new framework for fully affine invariant image comparison[J]. SIAM Journal on Imaging Sciences, 2009, 2(2):438-469. [39] SONG W H, JUNG H G, GWAK I Y, et al. Oblique aerial image matching based on iterative simulation and homography evaluation[J]. Pattern Recognition, 2019, 87:317-331. [40] XIAO Xiongwu, GUO Bingxuan, SHI Yueru, et al. Robust and rapid matching of oblique UAV images of urban area[C]//Proceedings of 2013 Pattern Recognition and Computer Vision. Dormstadt, Germany:TU Darmstadt, 2013, 8919:223-230. [41] 肖雄武,李德仁,郭丙轩,等.一种具有视点不变性的倾斜影像快速匹配方法[J].武汉大学学报(信息科学版), 2016, 41(9):1151-1159. XIAO Xiongwu, LI Deren, GUO Bingxuan,et al. A robust and rapid viewpoint-invariant matching method for oblique images[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9):1151-1159. [42] HU Han, ZHU Qing, DU Zhiqiang, et al. Reliable spatial relationship constrained feature point matching of oblique aerial images[J]. Photogrammetric Engineering&Remote Sensing, 2015, 81(1):49-58. [43] 李德仁,肖雄武,郭丙轩,等.倾斜影像自动空三及其在城市真三维模型重建中的应用[J].武汉大学学报(信息科学版), 2016, 41(6):711-721. LI Deren, XIAO Xiongwu, GUO Bingxuan,et al. Oblique image based automatic aerotriangulation and its application in 3D city model reconstruction[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6):711-721. [44] 张春森,张奇源,郭丙轩,等.倾斜影像自适应初始物方面元优化匹配算法[J].测绘学报, 2020, 49(1):108-116. DOI:10.11947/j.AGCS.2020.20190050. ZHANG Chunsen, ZHANG Qiyuan, GUO Bingxuan,et al. Oblique image matching algorithm based on adaptive initial object patch[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1):108-116. DOI:10.11947/j.AGCS.2020.20190050. [45] 张力,艾海滨,许彪,等.基于多视影像匹配模型的倾斜航空影像自动连接点提取及区域网平差方法[J].测绘学报, 2017, 46(5):554-564. DOI:10.11947/j.AGCS.2017.20160571. ZHANG Li, AI Haibin, XU Biao,et al. Automatic Tie-point extraction based on multiple-image matching and bundle adjustment of large block of oblique aerial images[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5):554-564. DOI:10.11947/j.AGCS.2017.20160571. [46] VERDIE Y, YI K M, FUA P, et al. TILDE:a temporally invariant learned DEtector[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston, MA, USA:IEEE, 2015:5279-5288. [47] ZHANG Xu, YU F X, KARAMAN S, et al. Learning discriminative and transformation covariant local feature detectors[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA:IEEE, 2017:4923-4931. [48] MISHKIN D, RADENOVIC F, MATAS J. Repeatability is not enough:learning affine regions via discriminability[C]//Proceedings of 2018 Computer Vision. Munich, Germany:ECCV, 2018. [49] TRZCINSKI T, CHRISTOUDIAS M, LEPETIT V. Learning image descriptors with boosting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):597-610. [50] PAULIN M, DOUZE M, HARCHAOUI Z, et al. Local convolutional features with unsupervised training for image retrieval[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015:91-99. [51] BALNTAS V, RIBA E, PONSA D, et al. Learning local feature descriptors with triplets and shallow convolutional neural networks[C]//Proceedings of the British Machine Vision Conference 2016. York, UK:BMVC,2016. [52] TIAN Yurun, FAN Bin, WU Fuchao. L2-net:deep learning of discriminative patch descriptor in euclidean space[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. IEEE, 2017:6128-6136. [53] LUO Zixin, SHEN Tianwei, ZHOU Lei, et al. GeoDesc:learning local descriptors by integrating geometry constraints[C]//Proceedings of 2018 Computer Vision. Munich,Germany:ECCV,2018. [54] TIAN Yurun, YU Xin, FAN Bin, et al. SOSNet:second order similarity regularization for local descriptor learning[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA:IEEE, 2019:11008-11017. [55] LUO Zixin, SHEN Tianwei, ZHOU Lei, et al. ContextDesc:local descriptor augmentation with cross-modality context[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA:IEEE, 2019:2522-2531. [56] YI K M, TRULLS E, LEPETIT V, et al. LIFT:Learned invariant feature transform[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam. Netherlands:ECCV, 2016:467-483. [57] DETONE D, MALISIEWICZ T, RABINOVICH A. SuperPoint:self-supervised interest point detection and description[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, UT, USA:IEEE, 2018:337-33712. [58] DUSMANU M, ROCCO I, PAJDLA T, et al. D2-net:a trainable CNN for joint description and detection of local features[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA:IEEE, 2019:8084-8093. [59] 蓝朝桢,卢万杰,于君明,等.异源遥感影像特征匹配的深度学习算法[J].测绘学报, 2021, 50(2):189-202.DOI:10.11947/j.AGCS.2021.20200048. LAN Chaozhen, LU Wanjie, YU Junming, et al. Deep learning algorithm for feature matching of cross modality remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2):189-202. DOI:10.11947/j.AGCS.2021.20200048. [60] LUO Zixin, ZHOU Lei, BAI Xuyang, et al. ASLFeat:learning local features of accurate shape and localization[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA:IEEE, 2020:6588-6597. [61] YI K M, TRULLS E, ONO Y, et al. Learning to find good correspondences[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA:IEEE, 2018:2666-2674. [62] ZHANG Jiahui, SUN Dawei, LUO Zixin, et al. Learning two-view correspondences and geometry using order-aware network[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South). IEEE, 2019:5844-5853. [63] SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue:learning feature matching with graph neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA:IEEE, 2020:4937-4946. [64] SUN Jiaming, SHEN Zehong, WANG Yuang, et al. LoFTR:detector-free local feature matching with transformers[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA:IEEE, 2021:8918-8927. [65] MA Jiayi, JIANG Xingyu, FAN Aoxiang, et al. Image matching from handcrafted to deep features:a survey[J]. International Journal of Computer Vision, 2021, 129(1):23-79. [66] SCHUT G H. Remarks on the theory of analytical aerial triangulation[J]. Photogrammetria, 1959, 16(2):57-66. [67] 金为铣,杨先宏,王树根.独立模型法区域网平差的一种新的计算方法[J].武汉测绘学院学报, 1985, 10(3):77-87, 91. JIN Weixi, YANG Xianhong, WANG Shugen. A new algorithm for block adjustment of independent models[J]. Journal of Wuhan Institute of Surveying and mapping, 1985, 10(3):77-87, 91. [68] 单杰,李德仁.摄影测量与大地测量观测值联合平差的质量分析[J].武汉测绘科技大学学报, 1990, 15(4):6-15. SHAN Jie, LI Deren. Quality analysis of combined adjustment with photogrammetric and geodetic observations[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1990, 15(4):6-15. [69] 薛武,张永生,赵玲,等.增量式SFM与POS辅助光束法平差精度比较[J].测绘学报, 2017, 46(2):198-207. DOI:10.11947/j.AGCS.2017.20160274. XUE Wu, ZHANG Yongsheng, ZHAO Ling, et al. Compareison of theaccuracy of incremental SFM with POS-aided bundle adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2):198-207. DOI:10.11947/j.AGCS.2017.20160274. [70] 张祖勋,陶鹏杰.谈大数据时代的"云控制"摄影测量[J].测绘学报, 2017, 46(10):1238-1248. DOI:10.11947/j.AGCS.2017.20170337. ZHANG Zuxun, TAO Pengjie. An overview on "cloud control" photogrammetry in big data era[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1238-1248. DOI:10.11947/j.AGCS.2017.20170337. [71] 单杰.光束法平差简史与概要[J].武汉大学学报(信息科学版), 2018, 43(12):1797-1810. SHAN Jie. Abrief history and essentials of bundle adjustment[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1797-1810. [72] AGARWAL S, SNAVELY N, SEITZ S M, et al.Bundle adjustment in the large[C]//Proceedings of European Conference on Computer Vision. Heidelberg,Berlin,Germany:Springer, 2010:29-42. [73] RUPNIK E, NEX F, TOSCHI I, et al. Aerial multi-camera systems:accuracy and block triangulation issues[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101:233-246. [74] SUN Yanbiao, SUN Huabo, YAN Lei, et al. RBA:reduced bundle adjustment for oblique aerial photogrammetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 121:128-142. [75] XU Zhihua, WU Lixin, GERKE M, et al. Skeletal camera network embedded structure-from-motion for 3D scene reconstruction from UAV images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 121:113-127. [76] 姜三,许志海,张峰,等.面向无人机倾斜影像的高效SfM重建方案[J].武汉大学学报(信息科学版), 2019, 44(8):1153-1161. JIANG San, XU Zhihai, ZHANG Feng, et al. Solution for efficient SfM reconstruction of oblique UAV images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8):1153-1161. [77] ÖZYEŞIL O, VORONINSKI V, BASRI R, et al. A survey of structure from motion[J]. Acta Numerica, 2017, 26:305-364. [78] MOULON P, MONASSE P, MARLET R. Global fusion of relative motions for robust, accurate and scalable structure from motion[C]//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia:IEEE, 2013:3248-3255. [79] WILSON K, SNAVELY N. Robust global translations with 1DSfM[C]//Proceedings of 2014 European Conference of Computer Vision, Cham,Cermany:Springer, 61-75. [80] SWEENEY C, HOLLERER T, TURK M. Theia:a fast and scalable structure-from-motion library[C]//Proceedings of the 23rd ACM International Conference on Multimedia. Brisbane Australia. New York, NY, USA:ACM, 2015. [81] AGARWAL S, SNAVELY N, SEITZ S M,et al. Bundle adjustment in the large[J]. Computer Vision,2010,3:29-42. [82] SCHÖNBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016:4104-4113. [83] AGARWAL S, FURUKAWA Y, SNAVELY N, et al. Building Rome in a day[J]. Communications of the ACM, 2011, 54(10):105-112. [84] MICHELINI M, MAYER H. Structure from motion for complex image sets[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:140-152. [85] XU Biao, ZHANG Li, LIU Yuxuan, et al. Robust hierarchical structure from motion for large-scale unstructured image sets[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181:367-384. [86] FARENZENA M, FUSIELLO A, GHERARDI R. Structure-and-motion pipeline on a hierarchical cluster tree[J]. ICCV Workshops. 2009:1489-1496. [87] GHERARDI R, FARENZENA M, FUSIELLO A. Improving the efficiency of hierarchical structure-and-motion[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA:IEEE, 2010:1594-1600. [88] SCHARSTEIN D, SZELISKI R, ZABIH R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1):7-42. [89] ZHANG Ke, LU Jiangbo, LAFRUIT G.[JP1] Cross-based local stereo matching using orthogonal integral images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(7):1073-1079. [90] YOON K J, KWEON I S. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4):650-656. [91] MEI Xing, SUN Xun, DONG Weiming, et al. Segment-tree based cost aggregation for stereo matching[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA:IEEE, 2013:313-320. [92] STRECHA C, FRANSENS R, VAN GOOL L. Wide-baseline stereo from multiple views:a probabilistic account[C]//Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. Washington, DC, USA:IEEE, 2004. [93] GARGALLO P, STURM P. Bayesian 3D modeling from images using multiple depth maps[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego, CA, USA:IEEE, 2005:885-891. [94] ZHANG Li. Automatic digital surface model (DSM) generation from linear array images[D]. Zurich:ETH Zurich, 2005. [95] FURUKAWA Y, PONCE J. Accurate, dense, and robust multiview stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8):1362-1376. [96] BLEYER M, RHEMANN C, ROTHER C. PatchMatch stereo-stereo matching with slanted support windows[C]//Proceedings of the British Machine Vision Conference 2011. Dundee,Scotland, UK:British Machine Vision Association, 2011::1-11. [97] SHEN Shuhan. Accurate multiple view 3D reconstruction using patch-based stereo for large-scale scenes[J]. IEEE Transactions on Image Processing. 2013, 22(5):1901-1914. [98] GOESELE M, SNAVELY N, CURLESS B, et al. Multi-view stereo for community photo collections[C]//Proceedings of 2007 IEEE 11th International Conference on Computer Vision. Rio de Janeiro, Brazil:IEEE, 2007:1-8. [99] STRECHA C, FRANSENS R, VAN GOOL L. Wide-baseline stereo from multiple views:a probabilistic account[C]//Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC, USA:IEEE, 2004:552-559. [100] FURUKAWA Y, PONCE J. Accurate, dense, and robust multiview stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8):1362-1376. [101] GEIGER A, ROSER M, URTASUN R. Efficient large-scale stereo matching[M]//Computer Vision-ACCV 2010. Heidelberg, Berlin,Germany:Springer,2011:25-38. [102] MATTOCCIA S, TOMBARI F, STEFANO L. Stereo vision enabling precise border localization within a scanline optimization framework[C]//Proceedings of Computer Vision-ACCV 2007. Heidelberg, Berlin,Germany:Springer,2007. [103] STRECHA C, FRANSENS R, VAN GOOL L. Combined depth and outlier estimation in multi-view stereo[C]//Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA:IEEE, 2006:2394-2401. [104] HIRSCHMVLLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2):328-341. [105] VOGIATZIS G, TORR P H S, CIPOLLA R. Multi-view stereo via volumetric graph-cuts[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005:391-398. [106] ROTHERMEL M, WENZEL K, FRITSCH D, et al. SURE:Photogrammetric surface reconstruction from imagery[C]//Proceedings of LC3D Workshop, Berlin,Germany:IEEE,2012, 8(2). [107] ROTHERMEL M, WENZEL K, FRITSCH D, et al. SURE:photogrammetric surface reconstruction from imagery[C]//Proceedings of LC3D Workshop, Berlin,Germany:IEEE, 2012. [108] 陶鹏杰.联合几何与辐射成像模型的三维表面重建与优化[D].武汉:武汉大学, 2016. TAO Pengjie. 3D surface reconstruction and optimization based on geometric and radiometric integral imaging model[D]. Wuhan:Wuhan University, 2016. [109] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving?The KITTI vision benchmark suite[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA:IEEE, 2012:3354-3361. [110] ZBONTAR J, LECUN Y. Stereo matching by training a convolutional neural network to compare image patches[J]. The Journal of Machine Learning Research, 2016, 17(1):2287-2318. [111] SEKI A, POLLEFEYS M. SGM-nets:semi-global matching with neural networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA:IEEE, 2017:6640-6649. [112] KNÖBELREITER P, REINBACHER C, SHEKHOVTSOV A, et al. End-to-end training of hybrid CNN-CRF models for stereo[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA:IEEE, 2017:1456-1465. [113] KENDALL A, MARTIROSYAN H, DASGUPTA S, et al. End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy:IEEE, 2017:66-75. [114] MAYER N, ILG E, HÄUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016:4040-4048. [115] LUO Wenjie, SCHWING A G, URTASUN R. Efficient deep learning for stereo matching[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016:5695-5703. [116] LIANG Zhengfa, FENG Yiliu, GUO Yulan, et al. Learning for disparity estimation through feature constancy[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA:IEEE, 2018:2811-2820. [117] ATIENZA R. Fast disparity estimation using dense networks[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation. Brisbane, QLD, Australia:IEEE, 2018:3207-3212. [118] JI Mengqi, GALL J, ZHENG Haitian, et al. SurfaceNet:an end-to-end 3D neural network for multiview stereopsis[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy:IEEE, 2017:2326-2334. [119] KAR A, HÄNE C, MALIK J. Learning a multi-view stereo machine[J]. Advances in Neural Information Processing Systems, 2017:30. [120] HUANG Pohan, MATZEN K, KOPF J, et al. DeepMVS:learning multi-view stereopsis[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA:IEEE, 2018:2821-2830. [121] YAO Y, LUO Z, LI S, et al. Mvsnet:Depth inference for unstructured multi-view stereo[C]//Proceedings of the European Conference on Computer Vision.[S.l.]:ECCV,2018:767-783. [122] YAO Yao, LUO Zixin, LI Shiwei, et al. Recurrent MVSNet for high-resolution multi-view stereo depth inference[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA:IEEE, 2019:5520-5529. [123] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA:Association for Computational Linguistics, 2014. [124] LIU Jin, JI Shunping. A novel recurrent encoder-decoder structure for large-scale multi-view stereo reconstruction from an open aerial dataset[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA:IEEE, 2020:6049-6058. [125] 艾海滨,董友强,王庆栋,等.基于语义的倾斜影像单体建模技术研究[J].测绘科学, 2019, 44(6):151-158. AI Haibin, DONG Youqiang, WANG Qingdong, et al. Study of semantic modeling framework-based method for 3D building reconstruction using oblique aerial images[J]. Science of Surveying and Mapping, 2019, 44(6):151-158. [126] HU Qingyong, YANG Bo, KHALID S, et al. Towards semantic segmentation of urban-scale 3D point clouds:a dataset, benchmarks and challenges[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA:IEEE, 2021:4975-4985. [127] WANG Xuan, JI Shunping. Roof plane segmentation from LiDAR point cloud data using region expansion based L0 gradient minimization and graph cut[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:10101-10116. [128] TIAN Yifei, SONG Wei, CHEN Long,[JP1] et al. Fast planar detection system using a GPU-based 3D Hough transform for LiDAR point clouds[J]. Applied Sciences, 2020, 10(5):1744. [129] CHEN Dong, ZHANG Liqiang, LI J, et al. Urban building roof segmentation from airborne lidar point clouds[J]. International Journal of Remote Sensing, 2012, 33(20):6497-6515. [130] 单杰,邓非,陶鹏杰,等.众源影像摄影测量[M].北京:科学出版社, 2019. SHANJie, DENG Fei, TAO Pengjie, et al. Public image photogrammetry[M]. Beijing:Science Press, 2019. [131] CHEN Hui, CHEN Wanlou, WU Renjie, et al. Plane segmentation for a building roof combining deep learning and the RANSAC method from a 3D point cloud[J]. Journal of Electronic Imaging, 2021, 30:053022. [132] LI Z, ZHANG W, SHAN J. Holistic parametric reconstruction of building models from point clouds[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020:689-695. |
[1] | 巩丹超, 韩轶龙, 黄旭. 线特征约束的建筑物密集匹配边缘全局优化方法[J]. 测绘学报, 2021, 50(6): 833-846. |
[2] | 伍洋, 张永生, 李凯, 于英, 赖广陵. 附加视线向量修正的卫星影像区域网平差[J]. 测绘学报, 2021, 50(1): 85-96. |
[3] | 韩杰, 陶醉, 谢勇, 刘其悦, 石宏斌. 顾及多积分时间特性的GF-4卫星PMS传感器交叉辐射定标[J]. 测绘学报, 2020, 49(10): 1311-1320. |
[4] | 曹辉, 陶鹏杰, 李海鸿, 张祖勋. DEM约束的卫星影像定位法[J]. 测绘学报, 2020, 49(1): 79-91. |
[5] | 王晋, 张勇, 张祖勋, 李晓, 陶鹏杰, 宋孟肖. ICESat激光高程点辅助的天绘一号卫星影像立体区域网平差[J]. 测绘学报, 2018, 47(3): 359-369. |
[6] | 王涛, 张艳, 张永生, 莫德林, 周丽雅. 国产机载大视场三线阵CCD相机GNSS偏心矢量和IMU视轴偏心角标定技术[J]. 测绘学报, 2018, 47(11): 1474-1486. |
[7] | 郑茂腾, 周顺平, 熊小东, 朱俊峰. GPU并行区域网平差[J]. 测绘学报, 2017, 46(9): 1193-1201. |
[8] | 杨博, 王密, 皮英冬. 仅用虚拟控制点的超大区域无控制区域网平差[J]. 测绘学报, 2017, 46(7): 874-881. |
[9] | 郑茂腾, 张永军, 朱俊峰, 熊小东, 周顺平. 一种快速有效的大数据区域网平差方法[J]. 测绘学报, 2017, 46(2): 188-197. |
[10] | 韩杰, 谢勇. 星载多相机拼接成像传感器在轨辐射定标方法[J]. 测绘学报, 2017, 46(11): 1830-1840. |
[11] | 朱庆, 陈崇泰, 胡翰, 丁雨淋. 顾及纹理特征的航空影像自适应密集匹配方法[J]. 测绘学报, 2017, 46(1): 62-72. |
[12] | 熊新, 靳国旺, 张红敏, 徐青. 方差分量估计在机载InSAR区域网平差中的应用[J]. 测绘学报, 2016, 45(5): 592-600. |
[13] | 闫利, 费亮, 叶志云, 夏旺. 大范围倾斜多视影像连接点自动提取的区域网平差法[J]. 测绘学报, 2016, 45(3): 310-317. |
[14] | 张浩, 张过, 蒋永华, 汪韬阳. 以SRTM-DEM为控制的光学卫星遥感立体影像正射纠正[J]. 测绘学报, 2016, 45(3): 326-331. |
[15] | 王祥, 张永军, 黄山, 谢勋伟. 旋转多基线摄影光束法平差法方程矩阵带宽优化[J]. 测绘学报, 2016, 45(2): 170-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||