测绘学报 ›› 2022, Vol. 51 ›› Issue (7): 1458-1475.doi: 10.11947/j.AGCS.2022.20220156
李志伟1, 许文斌1, 胡俊1, 冯光财1, 杨泽发1, 李佳1, 张恒2, 陈琦2, 朱建军1, 王琪洁1, 赵蓉3, 段梦3
收稿日期:
2022-03-01
修回日期:
2022-06-02
发布日期:
2022-08-13
作者简介:
李志伟(1974-),男,教授,研究方向为InSAR理论与应用。E-mail:zwli@csu.edu.cn
基金资助:
LI Zhiwei1, XU Wenbin1, HU Jun1, FENG Guangcai1, YANG Zefa1, LI Jia1, ZHANG Heng2, CHEN Qi2, ZHU Jianjun1, WANG Qijie1, ZHAO Rong3, DUAN Meng3
Received:
2022-03-01
Revised:
2022-06-02
Published:
2022-08-13
Supported by:
摘要: 自然因素或人类活动可使地球表层或内部应力发生变化,进而产生灾害事件。获取灾害事件与灾害过程的关键地学参数对于准确理解灾变过程、科学解释灾变机制、正确拟定应对策略具有重要意义。InSAR技术已广泛应用于自然因素或人类活动导致的灾害事件与灾变过程的参数反演。本文首先介绍了InSAR卫星的发展和地表形变监测的基本原理;然后分析了InSAR地学参数反演在地震、火山活动、地下水抽取、矿山开采、冻土冻融、冰川运动、地下流体迁移等各类潜在致灾事件中的研究现状;最后分析了InSAR地学参数反演存在的主要挑战和问题。
中图分类号:
李志伟, 许文斌, 胡俊, 冯光财, 杨泽发, 李佳, 张恒, 陈琦, 朱建军, 王琪洁, 赵蓉, 段梦. InSAR部分地学参数反演[J]. 测绘学报, 2022, 51(7): 1458-1475.
LI Zhiwei, XU Wenbin, HU Jun, FENG Guangcai, YANG Zefa, LI Jia, ZHANG Heng, CHEN Qi, ZHU Jianjun, WANG Qijie, ZHAO Rong, DUAN Meng. Partial geoscience parameters inversion from InSAR observation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1458-1475.
[1] GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping small elevation changes over large areas:differential radar interferometry[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B7):9183-9191. [2] BVRGMANN R, ROSEN P A, FIELDING E J. Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):169-209. [3] HOOPER A, BEKAERT D, SPAANS K, et al. Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J]. Tectonophysics, 2012, 514-517:1-13. [4] GOLDSTEIN R M, ENGELHARDT H, KAMB B, et al. Satellite radar interferometry for monitoring ice sheet motion:Application to an antarctic ice stream[J]. Science, 1993, 262(5139):1525-1530. [5] MASSONNET D, ROSSI M, CARMONA C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433):138-142. [6] MASSONNET D, BRIOLE P, ARNAUD A. Deflation of Mount Etna monitored by spaceborne radar interferometry[J]. Nature, 1995, 375(6532):567-570. [7] ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3):333-382. [8] GRAHAM L C. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 1974, 62(6):763-768. [9] FARR T G, ROSEN P A, CARO E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2):RG2004. [10] RIZZOLI P, MARTONE M, GONZALEZ C, et al. Generation and performance assessment of the global TanDEM-X digital elevation model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 132:119-139. [11] CURLANDER J C, MCDONOUGH R N. Synthetic aperture radar:systems and signal processing[M]. New York:[s.n.], 1991. [12] ELACHI C. Spaceborne radar remote sensing:applications and techniques[M]. New York:IEEE, 1988. [13] GENS R, VAN GENDEREN J L. Review article SAR interferometry-issues, techniques, applications[J]. International Journal of Remote Sensing, 1996, 17(10):1803-1835. [14] CHEN C W, ZEBKER H A. Phase unwrapping for large SAR interferograms:statistical segmentation and generalized network models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8):1709-1719. [15] LI Zhiwei, CAO Yunmeng, WEI Jianchao, et al. Time-series InSAR ground deformation monitoring:atmospheric delay modeling and estimating[J]. Earth-Science Reviews, 2019, 192:258-284. [16] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20. [17] FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212. [18] HOOPER A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008, 35(16):96-106. [19] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. [20] ZHANG Lei, DING Xiaoli, LU Zhong. Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(1):146-152. [21] WERNER C, WEGMULLER U, STROZZI T, et al. Interferometric point target analysis for deformation mapping[C]//Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium (IEEE Cat. No. 03CH37477). Toulouse, France:IEEE, 2004:4362-4364. [22] FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470. [23] DONG Jie, ZHANG Lu, TANG Minggao, et al. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers:a case study of Jiaju landslide in Danba, China[J]. Remote Sensing of Environment, 2018, 205:180-198. [24] PERISSIN D, WANG Teng. Time-series InSAR applications over urban areas in China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(1):92-100. [25] YU Hanwen, LAN Yang, YUAN Zhihui, et al. Phase unwrapping in InSAR:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(1):40-58. [26] COSTANTINI M. A novel phase unwrapping method based on network programming[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3):813-821. [27] FEIGL K L, SERGENT A, JACQ D. Estimation of an earthquake focal mechanism from a satellite radar interferogram:application to the December 4, 1992 Landers aftershock[J]. Geophysical Research Letters, 1995, 22(9):1037-1040. [28] OKADA Y. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the seismological society of America, 1992, 82(2):1018-1040. [29] 张红,王超,单新建,等.基于SAR差分干涉测量的张北-尚义地震震源参数反演[J].科学通报, 2001, 46(21):1837-1841. ZHANG Hong, WANG Chao, SHAN Xinjian, et al. Source parameter inversion of Zhangbei-Shangyi earthquake based on SAR differential interferometry[J]. Chinese Science Bulletin, 2001, 46(21):1837-1841. [30] FIALKO Y, SANDWELL D, AGNEW D, et al. Deformation on nearby faults induced by the 1999 Hector Mine earthquake[J]. Science, 2002, 297(5588):1858-1862. [31] FUNNING G J, PARSONS B, WRIGHT T J, et al. Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B9):B09406. [32] FENG Guangcai, HETLAND E A, DING Xiaoli, et al. Coseismic fault slip of the 2008Mw 7.9 Wenchuan earthquake estimated from InSAR and GPS measurements[J]. Geophysical Research Letters, 2010, 37(1):L01302. [33] HAMLING I J, HREINSDÓTTIR S, CLARK K, et al. Complex multifault rupture during the 2016Mw 7.8 Kaikōura earthquake, New Zealand[J]. Science, 2017, 356(6334):eaam7194. [34] HE Lijia, FENG Guangcai, WU Xiongxiao, et al. Coseismic and early postseismic slip models of the 2021Mw 7.4 Maduo earthquake (western China) estimated by space-based geodetic data[J]. Geophysical Research Letters, 2021, 48(24):e2021GL095860. [35] 冯万鹏,李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J].地球物理学进展, 2010, 25(4):1189-1196. FENG Wanpeng, LI Zhenhong. A novel hybrid PSO/simplex algorithm for determining earthquake source parameters using InSAR data[J]. Progress in Geophysics, 2010, 25(4):1189-1196. [36] BAGNARDI M, HOOPER A. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties:a Bayesian approach[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7):2194-2211. [37] JÓNSSON S, ZEBKER H, SEGALL P, et al. Fault slip distribution of the 1999Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4):1377-1389. [38] MOGI K. Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them[J]. Bulletin of the Earthquake Research Institute, 1958, 36:99-134. [39] YANG Xuemin, DAVIS P M, DIETERICH J H. Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing[J]. Journal of Geophysical Research:Solid Earth, 1988, 93(B5):4249-4257. [40] NIKKHOO M, WALTER T R, LUNDGREN P R, et al. Compound dislocation models (CDMs) for volcano deformation analyses[J]. Geophysical Journal International, 2017, 208(2):877-894. [41] XU Wenbin, XIE Lei, AOKI Y, et al. Volcano-wide deformation after the 2017 Erta Ale Dike Intrusion, Ethiopia, Observed with Radar Interferometry[J]. Journal of Geophysical Research:Solid Earth, 2020, 125(8):e2020JB019562. [42] XU Wenbin, RUCH J, JÓNSSON S. Birth of two volcanic islands in the southern Red Sea[J]. Nature Communications, 2015, 6(1):7104. [43] RUCH J, WANG Teng, XU Wenbin, et al. Oblique rift opening revealed by reoccurring magma injection in central Iceland[J]. Nature Communications, 2016, 7(1):12352. [44] BIGGS J, WRIGHT T J. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade[J]. Nature Communications, 2020, 11(1):3863. [45] GALLOWAY D L, BURBEY T J. Review:Regional land subsidence accompanying groundwater extraction[J]. Hydrogeology Journal, 2011, 19(8):1459-1486. [46] HOFFMANN J, GALLOWAY D L, ZEBKER H A. Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California[J]. Water Resources Research, 2003, 39(2):1031. [47] GALLOWAY D L, HUDNUT K W, INGEBRITSEN S E, et al. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California[J]. Water Resources Research, 1998, 34(10):2573-2585. [48] AMELUNG F, GALLOWAY D L, BELL J W, et al. Sensing the ups and downs of Las Vegas:InSAR reveals structural control of land subsidence and aquifer-system deformation[J]. Geology, 1999, 27(6):483-486. [49] JIANG L, BAI L, ZHAO Y, et al. Combining InSAR and hydraulic head measurements to estimate aquifer parameters and storage variations of confined aquifer system in Cangzhou, North China Plain[J]. Water Resources Research, 2018, 54(10):8234-8252. [50] CHAUSSARD E, MILILLO P, BVRGMANN R, et al. Remote sensing of ground deformation for monitoring groundwater management practices:application to the Santa Clara Valley during the 2012-2015 California drought[J]. Journal of Geophysical Research:Solid Earth, 2017, 122(10):8566-8582. [51] PENG Mimi, LU Zhong, ZHAO Chaoying, et al. Mapping land subsidence and aquifer system properties of the Willcox Basin, Arizona, from InSAR observations and independent component analysis[J]. Remote Sensing of Environment, 2022, 271:112894. [52] 许文斌,李志伟,丁晓利,等.利用InSAR短基线技术估计洛杉矶地区的地表时序形变和含水层参数[J].地球物理学报, 2012, 55(2):452-461. XU Wenbin, LI Zhiwei, DING Xiaoli, et al. Application of small baseline subsets D-InSAR technology to estimate the time series land deformation and aquifer storage coefficients of Los Angeles area[J]. Chinese Journal of Geophysics, 2012, 55(2):452-461. [53] CHEN Jingyi, KNIGHT R, ZEBKER H A, et al. Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations[J]. Water Resources Research, 2016, 52(5):3623-3636. [54] BURBEY T J. Three-dimensional deformation and strain induced by municipal pumping, part 2:numerical analysis[J]. Journal of Hydrology, 2006, 330(3-4):422-434. [55] WU Jichun, SHI Xiaoqing, YE Shujun, et al. Numerical simulation of viscoelastoplastic land subsidence due to groundwater overdrafting in Shanghai, China[J]. Journal of Hydrologic Engineering, 2010, 15(3):223-236. [56] ALGHAMDI A, HESSE M A, CHEN Jingyi, et al. Bayesian poroelastic aquifer characterization from InSAR surface deformation data. part I:maximum a posteriori estimate[J]. Water Resources Research, 2020, 56(10):e2020WR027391. [57] WEN Laifu, CHENG Jiulong, HUANG Shaohua, et al. Review of geophysical exploration on mined-out areas and water abundance[J]. Journal of Environmental and Engineering Geophysics, 2019, 24(1):129-143. [58] YANG Zefa, LI Zhiwei, ZHU Jianjun, et al. InSAR-based model parameter estimation of probability integral method and its application for predicting mining-induced horizontal and vertical displacements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8):4818-4832. [59] XIA Yuanping, WANG Yunjia, DU Sen, et al. Integration of D-InSAR and GIS technology for identifying illegal underground mining in Yangquan District, Shanxi Province, China[J]. Environmental Earth Sciences, 2018, 77(8):319. [60] XIA Yuanping, WANG Yunjia. InSAR-and PIM-based inclined goaf determination for illegal mining detection[J]. Remote Sensing, 2020, 12(23):3884. [61] DU Sen, WANG Yunjia, ZHENG Meinan, et al. Goaf locating based on InSAR and probability integration method[J]. Remote Sensing, 2019, 11(7):812. [62] BU Pu, LI Chaokui, LIAO Mengguang, et al. An approach for estimating underground-goaf boundaries based on combining DInSAR with a graphical method[J]. Advances in Civil Engineering, 2020, 2020:9375056. [63] YANG Zefa, LI Zhiwei, ZHU Jianjun, et al. Locating and defining underground goaf caused by coal mining from space-borne SAR interferometry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 135:112-126. [64] FAN Hongdong, LI Tengteng, GAO Yantao, et al. Characteristics inversion of underground goaf based on InSAR techniques and PIM[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 103:102526. [65] 程国栋,赵林,李韧,等.青藏高原多年冻土特征、变化及影响[J].科学通报, 2019, 64(27):2783-2795. CHENG Guodong, ZHAO Lin, LI Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64(27):2783-2795. [66] LIU Lin, SCHAEFER K, ZHANG Tingjun, et al. Estimating 1992-2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence[J]. Journal of Geophysical Research:Earth Surface, 2012, 117(F1):F01005. [67] 赵蓉.基于SBAS-InSAR的冻土形变建模及活动层厚度反演研究[D].长沙:中南大学, 2014. ZHAO Rong. Permafrost deformation model establishment and active layer thickness inversion based on SBAS-InSAR[D].Changsha:Central South University, 2014. [68] LI Zhiwei, ZHAO Rong, HU Jun, et al. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils[J]. Scientific Reports, 2015, 5(1):15542. [69] WANG Chao, ZHANG Zhengjia, ZHANG Hong, et al. Active layer thickness retrieval of Qinghai-Tibet permafrost using the TerraSAR-X InSAR technique[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11):4403-4413. [70] 徐晓明,吴青柏,张中琼.青藏高原多年冻土活动层厚度对气候变化的响应[J].冰川冻土, 2017, 39(1):1-8. XU Xiaoming, WU Qingbai, Zhang Zhongqiong. Responses of active layer thickness on the Qinghai-Tibet Plateau to climate change[J]. Journal of Glaciology and Geocryology, 2017, 39(1):1-8. [71] ANISIMOV O A. Changing climate and permafrost distribution in the Soviet Arctic[J]. Physical Geography, 1989, 10(3):285-293. [72] SUN Zhe, ZHAO Lin, HU Guojie, et al. Modeling permafrost changes on the Qinghai-Tibetan Plateau from 1966 to 2100:a case study from two boreholes along the Qinghai-Tibet engineering corridor[J]. Permafrost and Periglacial Processes, 2020, 31(1):156-171. [73] GANGODAGAMAGE C, ROWLAND J C, HUBBARD S S, et al. Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets[J]. Water Resources Research, 2014, 50(8):6339-6357. [74] WIDHALM B, BARTSCH A, LEIBMAN M, et al. Active-layer thickness estimation from X-band SAR backscatter intensity[J]. The Cryosphere, 2017, 11(1):483-496. [75] JIA Yuanyuan, KIM J W, SHUM C K, et al. Characterization of active layer thickening rate over the northern Qinghai-Tibetan Plateau permafrost region using ALOS interferometric synthetic aperture radar data, 2007-2009[J]. Remote Sensing, 2017, 9(1):84. [76] CHEN R H, MICHAELIDES R J, SULLIVAN T D, et al. Joint retrieval of soil moisture and permafrost active layer thickness using L-band insar and P-band polsar[C]//Proceedings of 2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa, HI, USA:IEEE, 2020:4606-4609. [77] MEIER M F, POST A. What are glacier surges?[J]. Canadian Journal of Earth Sciences, 1969, 6(4):807-817. [78] SINGH V P, SINGH P, HARITASHYA U K. Encyclopedia of snow, ice and glaciers[M]. Dordrecht:Springer, 2011. [79] HU Jun, LI Zhiwei, LI Jia, et al. 3D movement mapping of the alpine glacier in Qinghai-Tibetan Plateau by integrating D-InSAR, MAI and offset-tracking:case study of the Dongkemadi Glacier[J]. Global and Planetary Change, 2014, 118:62-68. [80] GRAY A L, SHORT N, MATTAR K E, et al. Velocities and flux of the filchner ice shelf and its tributaries determined from speckle tracking interferometry[J]. Canadian Journal of Remote Sensing, 2001, 27(3):193-206. [81] STROZZI T, LUCKMAN A, MURRAY T, et al. Glacier motion estimation using SAR offset-tracking procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2384-2391. [82] LI Jia, LI Zhiwei, WU Lixin, et al. Deriving a time series of 3D glacier motion to investigate interactions of a large mountain glacial system with its glacial lake:use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset technique[J]. Journal of Hydrology, 2018, 559:596-608. [83] GUO Lei, LI Jia, LI Zhiwei, et al. The surge of the Hispar glacier, Central Karakoram:SAR 3D flow velocity time series and thickness changes[J]. Journal of Geophysical Research:Solid Earth, 2020, 125(7):e2019JB018945. [84] QUINCEY D J, BRAUN M, GLASSER N F, et al. Karakoram glacier surge dynamics[J]. Geophysical Research Letters, 2011, 38(18):L18504. [85] YASUDA T, FURUYA M. Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet[J]. Journal of Geophysical Research:Earth Surface, 2015, 120(11):2393-2405. [86] WENDT A, MAYER C, LAMBRECHT A, et al. A glacier surge of Bivachny Glacier, Pamir Mountains, observed by a time series of high-resolution digital elevation models and glacier velocities[J]. Remote Sensing, 2017, 9(4):388. [87] TRENBERTH K E, FASULLO J, SMITH L. Trends and variability in column-integrated atmospheric water vapor[J]. Climate Dynamics, 2005, 24(7):741-758. [88] HANSSEN R F, WECKWERTH T M, ZEBKER H A, et al. High-resolution water vapor mapping from interferometric radar measurements[J]. Science, 1999, 283(5406):1297-1299. [89] MATEUS P, NICO G, CATALÃO J. Can spaceborne SAR interferometry be used to study the temporal evolution of PWV?[J]. Atmospheric Research, 2013, 119:70-80. [90] LIU S. Satellite radar interferometry:Estimation of atmospheric delay[D]. Delft:Delft University of Technology, 2012. [91] ALSHAWAF F, HINZ S, MAYER M, et al. Constructing accurate maps of atmospheric water vapor by combining interferometric synthetic aperture radar and GNSS observations[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(4):1391-1403. [92] DUAN Meng, XU Bing, LI Zhiwei, et al. Non-differential water vapor estimation from SBAS-InSAR[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 204:105284. [93] PICHELLI E, FERRETTI R, CIMINI D, et al. InSAR water vapor data assimilation into mesoscale model MM5:technique and pilot study[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8):3859-3875. [94] MATEUS P, TOMÉ R, NICO G, et al. Three-dimensional variational assimilation of InSAR PWV using the WRFDA model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7323-7330. [95] CAO Yunmeng, LI Zhiwei, DUAN Meng, et al. High-resolution water vapor maps obtained by merging interferometric synthetic aperture radar and GPS measurements[J]. Journal of Geophysical Research:Atmospheres, 2021, 126(1):e2020JD033430. [96] WANG Yuedong, FENG Guangcai, LI Zhiwei, et al. Retrieving the displacements of the Hutubi (China) underground gas storage during 2003-2020 from multi-track InSAR[J]. Remote Sensing of Environment, 2022, 268:112768. [97] VASCO D W, WICKS C JR, KARASAKI K, et al. Geodetic imaging:reservoir monitoring using satellite interferometry[J]. Geophysical Journal International, 2002, 149(3):555-571. [98] VASCO D W, FERRETTI A. On the use of quasi-static deformation to understand reservoir fluid flow[J]. Geophysics, 2005, 70(4):O13-O27. [99] VASCO D W, PUSKAS C M, SMITH R B, et al. Crustal deformation and source models of the Yellowstone volcanic field from geodetic data[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B7):B07402. [100] CAMACHO A G, GONZÁLEZ P J, FERNÁNDEZ J, et al. Simultaneous inversion of surface deformation and gravity changes by means of extended bodies with a free geometry:Application to deforming calderas[J]. Journal of Geophysical Research:Solid Earth, 2011, 116(B10):B10401. [101] ZHAI Guang, SHIRZAEI M. Spatiotemporal model of Kīlauea's summit magmatic system inferred from InSAR time series and geometry-free time-dependent source inversion[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(7):5425-5446. [102] HU Jun, DING Xiaoli, ZHANG Lei, et al. Estimation of 3D surface displacement based on InSAR and deformation modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4):2007-2016. [103] LIU Xiaoge, HU Jun, SUN Qian, et al. Deriving 3D time-series ground deformations induced by underground fluid flows with InSAR:case study of sebei gas fields, China[J]. Remote Sensing, 2017, 9(11):1129. [104] WANG Leyang, CHEN Tao. Ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints[J]. Geodesy and Geodynamics, 2021, 12(5):336-346. [105] 蒋星达,张伟,杨辉.地球物理反演问题中的贝叶斯方法研究[J].地球与行星物理论评, 2022, 53(2):159-171. JIANG Xingda, ZHANG Wei, YANG Hui. The research on Bayesian inference for geophysical inversion[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(2):159-171. [106] LOHMAN R B, SIMONS M. Some thoughts on the use of InSAR data to constrain models of surface deformation:Noise structure and data downsampling[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(1):Q01007. [107] LIU Xiaoge, XU Wenbin. Logarithmic model joint inversion method for coseismic and postseismic slip:application to the 2017Mw 7.3 Sarpol Zahāb Earthquake, Iran[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(11):12034-12052. |
[1] | 许强, 朱星, 李为乐, 董秀军, 戴可人, 蒋亚楠, 陆会燕, 郭晨. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报, 2022, 51(7): 1416-1436. |
[2] | 马张烽, 蒋弥, 李桂华, 黄腾. 空间网络对时序InSAR相位解缠的影响——以Delaunay与Dijkstra网络为例[J]. 测绘学报, 2022, 51(2): 248-257. |
[3] | 刘计洪, 胡俊, 李志伟, 朱建军. InSAR三维同震地表形变监测——窗口优化的SM-VCE算法[J]. 测绘学报, 2021, 50(9): 1222-1239. |
[4] | 邵凯, 张厚喆, 秦显平, 黄志勇, 易彬, 谷德峰. 分布式InSAR编队卫星精密绝对和相对轨道确定[J]. 测绘学报, 2021, 50(5): 580-588. |
[5] | 何秀凤, 高壮, 肖儒雅, 罗海滨, 冯灿. 多时相Sentinel-1A InSAR的连盐高铁沉降监测分析[J]. 测绘学报, 2021, 50(5): 600-611. |
[6] | 刘青豪, 张永红, 邓敏, 吴宏安, 康永辉, 魏钜杰. 大范围地表沉降时序深度学习预测法[J]. 测绘学报, 2021, 50(3): 396-404. |
[7] | 朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2): 135-144. |
[8] | 吴文豪, 张磊, 李陶, 龙四春, 段梦, 周志伟, 祝传广, 蒋廷臣. 基于几何配准的多模式SAR影像配准及其误差分析[J]. 测绘学报, 2019, 48(11): 1439-1451. |
[9] | 王乐洋, 高华, 冯光财. 利用InSAR和GPS数据分析台湾西南两次Mw>6地震的触发关系及应力影响[J]. 测绘学报, 2019, 48(10): 1244-1253. |
[10] | 郭山川, 张绍良, 侯湖平, 朱前林, 刘润. 基于临时相干目标监测非城区地表形变[J]. 测绘学报, 2019, 48(1): 106-116. |
[11] | 唐新明, 李涛, 高小明, 陈乾福, 张祥. 雷达卫星自动成图的精密干涉测量关键技术[J]. 测绘学报, 2018, 47(6): 730-740. |
[12] | 张勤, 黄观文, 杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报, 2017, 46(10): 1300-1307. |
[13] | 林珲, 马培峰, 王伟玺. 监测城市基础设施健康的星载MT-InSAR方法介绍[J]. 测绘学报, 2017, 46(10): 1421-1433. |
[14] | 汪云甲. 矿区生态扰动监测研究进展与展望[J]. 测绘学报, 2017, 46(10): 1705-1716. |
[15] | 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||