[1] |
杨小军. 城市遥感:城市环境监测、集成与建模[M]. 肖荣波,译. 北京: 高等教育出版社, 2015.
|
|
YANG Xiaojun. Urban remote sensing: monitoring, synthesis and modeling in the urban environment[M]. XIAO Rongbo, trans. Beijing: Higher Education Press, 2015.
|
[2] |
CHEN Lai, KANG Chaogui, YANG chao. Understanding citizens' emotion states under the urban livability environment through social media data: a case study of Wuhan[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2): 49-59.
|
[3] |
XIAO Zhifeng, LIU Qing, TANG Gefu, et al. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images[J]. International Journal of Remote Sensing, 2015, 36(2): 618-644.
|
[4] |
ZHU Qiqi, ZHONG Yanfei, ZHANG Liangpei. Multi-feature probability topic scene classifier for high spatial resolution remote sensing imagery[C]//Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City: IEEE, 2014: 2854-2857.
|
[5] |
WANG Kaijia, XU Weiming, LI Chuyu, et al. A study on the function and structure of mixed land use in urban built-up areas from the perspective of spatial governance[J]. Journal of Natural Resources, 2023, 38(6): 1496.
|
[6] |
龚健雅, 张觅, 胡翔云, 等. 智能遥感深度学习框架与模型设计[J]. 测绘学报, 2022, 51(4): 475-487. DOI:.
doi: 10.11947/j.AGCS.2022.20220027
|
|
GONG Jianya, ZHANG Mi, HU Xiangyun, et al. The design of deep learning framework and model for intelligent remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 475-487. DOI:.
doi: 10.11947/j.AGCS.2022.20220027
|
[7] |
GUO Zhou, WEN Jiangtian, XU Rui. A shape and size free-CNN for urban functional zone mapping with high-resolution satellite images and POI data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5622117.
|
[8] |
JOHNSON N, TREIBLE W, CRISPELL D. OpenSentinelMap: a large-scale land use dataset using OpenStreetMap and Sentinel-2 imagery[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022: 1332-1340.
|
[9] |
LU Weipeng, TAO Chao, LI Haifeng, et al. A unified deep learning framework for urban functional zone extraction based on multi-source heterogeneous data[J]. Remote Sensing of Environment, 2022, 270: 112830.
|
[10] |
GAO Mianxin, GUO Haijing, LIU Longwei, et al. Integrating street view imagery and taxi trajectory for identifying urban function of street space[J/OL]. Geo-spatial Information Science, 2024: 1-23[2023-12-10].https://doi.org/10.1080/10095020.2024.2311866.
|
[11] |
SU Chen, HU Xinli, MENG Qingyan, et al. A multimodal fusion framework for urban scene understanding and functional identification using geospatial data[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 127: 103696.
|
[12] |
ZHANG Yan, LIU Pengyuan, BILJECKI F. Knowledge and topology: a two layer spatially dependent graph neural networks to identify urban functions with time-series street view image[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 198: 153-168.
|
[13] |
鲁伟鹏, 贺清康, 李佳铃, 等. 结合对象单元和Transformer网络的城市功能区分类[J]. 遥感学报, 2024, 28(8): 1927-1939.
|
|
LU Weipeng, HE Qingkang, LI Jialing, et al. Object units and Transformer networks combined with urban functional zone classification method[J]. National Remote Sensing Bulletin, 2024, 28(8): 1927-1939.
|
[14] |
WU Hao, LUO Wenting, LIN Anqi, et al. SALT: a multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images[J]. Computers, Environment and Urban Systems, 2023, 100: 101921.
|
[15] |
DU Shouji, DU Shihong, LIU Bo, et al. Large-scale urban functional zone mapping by integrating remote sensing images and open social data[J]. GIScience & Remote Sensing, 2020, 57(3): 411-430.
|
[16] |
CAO Rui, TU Wei, YANG Cuixin, et al. Deep learning-based remote and social sensing data fusion for urban region function recognition[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 82-97.
|
[17] |
张良培, 何江, 杨倩倩, 等. 数据驱动的多源遥感信息融合研究进展[J]. 测绘学报, 2022, 51(7): 1317-1337. DOI:.
doi: 10.11947/j.AGCS.2022.20220171
|
|
ZHANG Liangpei, HE Jiang, YANG Qianqian, et al. Data-driven multi-source remote sensing data fusion: progress and challenges[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317-1337. DOI:.
doi: 10.11947/j.AGCS.2022.20220171
|
[18] |
XU Shengyu, QING Linbo, HAN Longmei, et al. A new remote sensing images and point-of-interest fused (RPF) model for sensing urban functional regions[J]. Remote Sensing, 2020, 12(6): 1032.
|
[19] |
CHEN Dongsheng, TU Wei, CAO Rui, et al. A hierarchical approach for fine-grained urban villages recognition fusing remote and social sensing data[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 106: 102661.
|
[20] |
张兵, 杨晓梅, 高连如, 等. 遥感大数据智能解译的地理学认知模型与方法[J]. 测绘学报, 2022, 51(7): 1398-1415. DOI:.
doi: 10.11947/j.AGCS.2022.20220279
|
|
ZHANG Bing, YANG Xiaomei, GAO Lianru, et al. Geo-cognitive models and methods for intelligent interpretation of remotely sensed big data[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1398-1415. DOI:.
doi: 10.11947/j.AGCS.2022.20220279
|
[21] |
BAI Lubin, HUANG Weiming, ZHANG Xiuyuan, et al. Geographic mapping with unsupervised multi-modal representation learning from VHR images and POIs[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 201: 193-208.
|
[22] |
ZAKERI F, MARIETHOZ G. A review of geostatistical simulation models applied to satellite remote sensing: methods and applications[J]. Remote Sensing of Environment, 2021, 259: 112381.
|
[23] |
陶超, 阴紫薇, 朱庆, 等. 遥感影像智能解译:从监督学习到自监督学习[J]. 测绘学报, 2021, 50(8): 1122-1134. DOI:.
doi: 10.11947/j.AGCS.2021.20210089
|
|
TAO Chao, YIN Ziwei, ZHU Qing, et al. Remote sensing image intelligent interpretation: from supervised learning to self-supervised learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1122-1134. DOI:.
doi: 10.11947/j.AGCS.2021.20210089
|
[24] |
TAO Chao, QI Ji, GUO Mingning, et al. Self-supervised remote sensing feature learning: learning paradigms, challenges, and future works[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-26.
|
[25] |
BACHMANN R, MIZRAHI D, ATANOV A, et al. MultiMAE: multi-modal multi-task masked autoencoders[EB/OL]. [2023-12-10].https://arxiv.org/pdf/2204.01678.
|
[26] |
中国城市规划设计研究院. 城市用地分类与规划建设用地标准:GB 50137—2011[S]. 北京: 中国建筑工业出版社, 2011.
|
|
China Academy of Urban Planning and Design. Code for classification of urban land use and planning standards of development land: GB 50137—2011[S]. Beijing: China Architecture & Building Press, 2011.
|
[27] |
HE Kaiming, CHEN Xinlei, XIE Saining, et al. Masked autoencoders are scalable vision learners[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 15979-15988.
|
[28] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2023-12-10].https://arxiv.org/pdf/2010.11929.
|
[29] |
LIU Zhuang, MAO Hanzi, WU Chaoyuan, et al. A ConvNet for the 2020s[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11966-11976.
|
[30] |
ZHOU Wen, MING Dongping, LÜ Xianwei, et al. SO-CNN based urban functional zone fine division with VHR remote sensing image[J]. Remote Sensing of Environment, 2020, 236: 111458.
|
[31] |
ZHAO Wenzhi, BO Yanchen, CHEN Jiage, et al. Exploring semantic elements for urban scene recognition: deep integration of high-resolution imagery and OpenStreetMap (OSM)[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151: 237-250.
|
[32] |
GUO Yiwen, TANG Jianbo, LIU Huimin, et al. Identifying up-to-date urban land-use patterns with visual and semantic features based on multisource geospatial data[J]. Sustainable Cities and Society, 2024, 101: 105184.
|