测绘学报 ›› 2024, Vol. 53 ›› Issue (10): 1955-1966.doi: 10.11947/j.AGCS.2024.20240068.
• 遥感大模型 • 上一篇
收稿日期:
2024-02-18
发布日期:
2024-11-26
通讯作者:
程昫
E-mail:wangmi@whu.edu.cn;xucheng@whu.edu.cn
作者简介:
王密(1974—),男,博士,教授,博士生导师,主要研究方向为高精度智能卫星遥感技术。E-mail:wangmi@whu.edu.cn
基金资助:
Mi WANG1,(), Xu CHENG1(), Jun PAN1, Yingdong PI1, Jing XIAO2
Received:
2024-02-18
Published:
2024-11-26
Contact:
Xu CHENG
E-mail:wangmi@whu.edu.cn;xucheng@whu.edu.cn
About author:
WANG Mi (1974—), male, PhD, professor, PhD supervisor, majors in high precision satellite remote sensing technology. E-mail: wangmi@whu.edu.cn
Supported by:
摘要:
大模型从深度学习和迁移学习技术发展而来,依靠大量的训练数据和庞大的参数容量产生规模效应,从而激发了模型的涌现能力,在众多下游任务中展现了强大的泛化性和适应性。以ChatGPT、SAM为代表的大模型标志着通用人工智能时代的到来,为地球空间信息处理的自动化与智能化提供了新的理论与技术。为了进一步探索大模型赋能泛摄影测量领域的方法与途径,本文回顾了摄影测量领域的基本问题和任务内涵,总结了深度学习方法在摄影测量智能处理中的研究成果,分析了面向特定任务的监督预训练方法的优势与局限;阐述了通用人工智能大模型的特点及研究进展,关注大模型在基础视觉任务中的场景泛化性以及三维表征方面的潜力;从训练数据、模型微调策略和异构多模态数据融合处理3个方面,探讨了大模型技术在摄影测量领域当前面临的挑战与发展趋势。
中图分类号:
王密, 程昫, 潘俊, 皮英冬, 肖晶. 大模型赋能智能摄影测量:现状、挑战与前景[J]. 测绘学报, 2024, 53(10): 1955-1966.
Mi WANG, Xu CHENG, Jun PAN, Yingdong PI, Jing XIAO. Large models enabling intelligent photogrammetry: status, challenges and prospects[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1955-1966.
[1] | 李德仁. 摄影测量与遥感的现状及发展趋势[J]. 武汉测绘科技大学学报, 2000, 25(1):1-6. |
LI Deren. Towards photogrammetry and remote sensing: status and future development[J]. Journal of Wuhan Technical University of Surveying and Mapping, 2000, 25(1):1-6. | |
[2] | 宁津生, 杨凯. 从数字化测绘到信息化测绘的测绘学科新进展[J]. 测绘科学, 2007, 32(2):5-11. |
NING Jinsheng, YANG Kai. The newest progress of surveying & mapping discipline from digital style to informatization stage[J]. Science of Surveying and Mapping, 2007, 32(2):5-11. | |
[3] |
李德仁. 从测绘学到地球空间信息智能服务科学[J]. 测绘学报, 2017, 46(10):1207-1212. DOI:.
doi: 10.11947/j.AGCS.2017.20170263 |
LI Deren. From geomatics to geospatial intelligent service science[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1207-1212. DOI:.
doi: 10.11947/j.AGCS.2017.20170263 |
|
[4] |
张永军, 万一, 史文中, 等. 多源卫星影像的摄影测量遥感智能处理技术框架与初步实践[J]. 测绘学报, 2021, 50(8):1068-1083. DOI:.
doi: 10.11947/j.AGCS.2021.20210079 |
ZHANG Yongjun, WAN Yi, SHI Wenzhong, et al. Technical framework and preliminary practices of photogrammetric remote sensing intelligent processing of multi-source satellite images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1068-1083. DOI:.
doi: 10.11947/j.AGCS.2021.20210079 |
|
[5] | DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Confe-rence on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255. |
[6] | BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advances in neural information processing systems, 2020, 33:1877-1901. |
[7] | BOMMASANI R, HUDSON D A, ADELI E, et al. On the opportunities and risks of foundation models[EB/OL]. [2023-11-28]. http://arxiv.org/abs/2108.07258. |
[8] |
龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018, 47(6):693-704. DOI:.
doi: 10.11947/j.AGCS.2018.20170640 |
GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):693-704. DOI:.
doi: 10.11947/j.AGCS.2018.20170640 |
|
[9] | 张良培, 张乐飞, 袁强强. 遥感大模型:进展与前瞻[J]. 武汉大学学报(信息科学版), 2023, 48(10):1574-1581. |
ZHANG Liangpei, ZHANG Lefei, YUAN Qiangqiang. Large remote sensing model: progress and prospects[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10):1574-1581. | |
[10] | 杨必胜, 陈一平, 邹勤. 从大模型看测绘时空信息智能处理的机遇和挑战[J]. 武汉大学学报(信息科学版), 2023, 48(11):1756-1768. |
YANG Bisheng, CHEN Yiping, ZOU Qin. Opportunities and challenges of spatiotemporal information intelligent processing of surveying and mapping in the era of large models[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11):1756-1768. | |
[11] | DETONE D, MALISIEWICZ T, RABINOVICH A. SuperPoint: self-supervised interest point detection and description[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 224-236. |
[12] | SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue: learning feature matching with graph neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4938-4947. |
[13] | 赵伍迪, 李山山, 李安, 等. 结合深度学习的高光谱与多源遥感数据融合分类[J]. 遥感学报, 25(7):1489-1502. |
ZHAO Wudi, LI Shanshan, LI An, et al. Deep fusion of hyperspectral images and multi-source remote sensing data for classification with convolutional neural network[J]. National Remote Sensing Bulletin, 25(7):1489-1502. | |
[14] | YANG Y, JIAO L, LIU F, et al. An explainable spatial-frequency multi-scale transformer for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5907515. |
[15] |
张祖勋, 姜慧伟, 庞世燕, 等. 多时相遥感影像的变化检测研究现状与展望[J]. 测绘学报, 2022, 51(7):1091-1107. DOI:.
doi: 10.11947/j.AGCS.2022.20220070 |
ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, et al. Review and prospect in change detection of multi-temporal remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1091-1107. DOI:.
doi: 10.11947/j.AGCS.2022.20220070 |
|
[16] | SU Hang, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 945-953. |
[17] | KALOGERAKIS E, AVERKIOU M, MAJI S, et al. 3D shape segmentation with projective convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 3779-3788. |
[18] | WU Zhirong, SONG Shuran, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1912-1920. |
[19] | BROCK A, LIM T, RITCHIE J, et al. Generative and discriminative voxel modeling with convolutional neural networks[EB/OL]. [2024-02-15]. https://arxiv.org/abs/1608.04236. |
[20] | CHARLES R Q, HAO Su, MO Kaichun, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 652-660. |
[21] | QI C R, YI Li, SU Hao, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. [2024-02-15]. https://arxiv.org/abs/1706.02413v1. |
[22] | HANOCKA R, HERTZ A, FISH N, et al. MeshCNN: a network with an edge[J]. ACM Transactions on Graphics, 2019, 38(4):1-12. |
[23] | YAO Yao, LUO Zixin, LI Shiwei, et al. MVSNet: depth inference for unstructured multi-view stereo[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 767-783. |
[24] | GU Xiaodong, FAN Zhiwen, ZHU Siyu, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Seattle: IEEE, 2020: 2495-2504. |
[25] | YANG Jiayu, MAO Wei, ALVAREZ J M, et al. Cost volume pyramid based depth inference for multi-view stereo[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4877-4886. |
[26] | LUO Keyang, GUAN Tao, JU Lili, et al. P-MVSNet: learning patch-wise matching confidence aggregation for multi-view stereo[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 10452-10461. |
[27] | XU Qingshan, SU Wanjuan, QI Yuhang, et al. Learning inverse depth regression for pixelwise visibility-aware multi-view stereo networks[J]. International Journal of Computer Vision, 2022, 130(8):2040-2059. |
[28] | ZHANG Jingyang, LI Shiwei, LUO Zixin, et al. Vis-MVSNet: visibility-aware multi-view stereo network[J]. International Journal of Computer Vision, 2023, 131(1):199-214. |
[29] | GKIOXARI G, JOHNSON J, MALIK J. Mesh R-CNN[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9785-9795. |
[30] | EIGEN D, PUHRSCH C, FERGUS R. Depth map prediction from a single image using a multi-scale deep network[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2366-2374. |
[31] | CHOY C B, XU Danfei, GWAK J, et al. 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction[M]//Lecture notes in computer science. Cham: Springer International Publishing, 2016: 628-644. |
[32] | FAN Haoqiang, SU Hao, GUIBAS L. A point set generation network for 3D object reconstruction from a single image[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 605-613. |
[33] | WANG Nanyang, ZHANG Yinda, LI Zhuwen, et al. Pixel2Mesh: generating 3D mesh models from single RGB images[M]//Lecture notes in computer science. Cham: Springer International Publishing, 2018: 55-71. |
[34] | RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2103.00020. |
[35] | ZHAI Xiaohua, WANG Xiao, MUSTAFA B, et al. LiT: zero-shot transfer with locked-image text tuning[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 18123-18133. |
[36] | TSIMPOUKELLI M, MENICK J L, CABI S, et al. Multimodal few-shot learning with frozen language models[J]. Advances in Neural Information Processing Systems, 2021, 34:200-212. |
[37] | ALAYRAC J B, DONAHUE J, LUC P, et al. Flamingo: a visual language model for few-shot learning[J]. Advances in Neural Information Processing Systems, 2022, 35:23716-23736. |
[38] | YAO Lewei, HUANG Runhu, HOU Lu, et al. FILIP: fine-grained interactive language-image pre-training[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2111.07783. |
[39] | WANG X, ZHANG X, CAO Y, et al. SegGPT: segmenting everything in context[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2304.03284. |
[40] | KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2304.02643v1. |
[41] | LYU Chenyang, WU Minghao, WANG Longyue, et al. Macaw-LLM: multi-modal language modeling with image, audio, video, and text integration[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2306.09093v1. |
[42] | GIRDHAR R, EL-NOUBY A, LIU Zhuang, et al. ImageBind one embedding space to bind them all[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 15180-15190. |
[43] | ZHANG Yiyuan, GONG Kaixiong, ZHANG Kaipeng, et al. Meta-transformer: a unified framework for multimodal learning[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2307.10802v1. |
[44] | XUE Le, GAO Mingfei, XING Chen, et al. ULIP: learning a unified representation of language, images, and point clouds for 3D understanding[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 1179-1189. |
[45] | ZHOU J, WANG J, MA B, et al. Uni3D: exploring unified 3D representation at scale[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2310.06773. |
[46] | SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1):60. |
[47] | TRABUCCO B, DOHERTY K, GURINAS M, et al. Effective data augmentation with diffusion models[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2302.07944v2. |
[48] | SHUMAILOV I, SHUMAYLOV Z, ZHAO Yiren, et al. The curse of recursion: training on generated data makes models forget[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2305.17493v3. |
[49] | SUN Xian, WANG Peijin, LU Wanxuan, et al. RingMo: a remote sensing foundation model with masked image modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5612822. |
[50] | JIA Chao, YANG Yinfei, XIA Ye, et al. Scaling up visual and vision-language representation learning with noisy text supervision[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2102.05918. |
[51] | XIANG Shouxing, YE Xi, XIA Jiazhi, et al. Interactive correction of mislabeled training data[C]//Proceedings of 2019 IEEE Confe-rence on Visual Analytics Science and Technology. Vancouver: IEEE, 2019: 57-68. |
[52] | REIF E, KAHNG M, PETRIDIS S. Visualizing linguistic diversity of text datasets synthesized by large language models[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2305.11364v2. |
[53] | KOLVE E, MOTTAGHI R, HAN W, et al. AI2-THOR: an interactive 3D environment for visual AI[EB/OL]. [2024-02-15]. https://arxiv.org/abs/1712.05474v4. |
[54] | LI Chengshu, XIA Fei, MARTÍN-MARTÍN R, et al. iGibson 2.0: object-centric simulation for robot learning of everyday household tasks[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2108.03272v4. |
[55] | RAMRAKHYA R, UNDERSANDER E, BATRA D, et al. Habitat-web: learning embodied object-search strategies from human demonstrations at scale[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 5173-5183. |
[56] | SZOT A, CLEGG A, UNDERSANDER E, et al. Habitat 2.0: training home assistants to rearrange their habitat[J]. Advances in Neural Information Processing Systems, 2021, 34:251-266. |
[57] | DEITKE M, SCHWENK D, SALVADOR J, et al. Objaverse: a universe of annotated 3D objects[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 13142-13153. |
[58] | LING Lu, SHENG Yichen, TU Zhi, et al. DL3DV-10K: a large-scale scene dataset for deep learning-based 3D vision[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2312.16256v2. |
[59] | YANG Y, WU X, HE T, et al. SAM3D: segment anything in 3D scenes[EB/OL]. [2023-11-27]. http://arxiv.org/abs/2306.03908. |
[60] | CEN J, ZHOU Z, FANG J, et al. Segment anything in 3D with NeRFs[EB/OL]. [2023-11-27]. http://arxiv.org/abs/2304.12308. |
[61] | MARI R, FACCIOLO G, EHRET T. Sat-NeRF: learning multi-view satellite photogrammetry with transient objects and shadow modeling using RPC cameras[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022: 1311-1321. |
[62] | XU Linning, XIANGLI Yuanbo, PENG Sida, et al. Grid-guided neural radiance fields for large urban scenes[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023. |
[63] | TANCIK M, CASSER V, YAN Xinchen, et al. Block-NeRF: scalable large scene neural view synthesis[C]//2022 IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 8248-8258. |
[64] | LIALIN V, DESHPANDE V, RUMSHISKY A. Scaling down to scale up: a guide to parameter-efficient fine-tuning[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2303.15647v1. |
[65] | HU J E, SHEN Yelong, WALLIS P, et al. LoRA: low-rank adaptation of large language models[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2106.09685. |
[66] | HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient transfer learning for NLP[EB/OL]. [2024-02-15]. https://arxiv.org/abs/1902.00751. |
[67] | PFEIFFER J, RÜCKLÉ A, POTH C, et al. AdapterHub: a framework for adapting transformers[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2007.07779v3. |
[68] | WANG Xinlong, WANG Wen, CAO Yue, et al. Images speak in images: a generalist painter for in-context visual learning[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 6830-6839. |
[69] | SAITO K, SOHN K, ZHANG Xiang, et al. Prefix conditioning unifies language and label supervision[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 2861-2870. |
[70] | CHEN Keyan, LIU Chenyang, CHEN Hao, et al. RSPrompter: learning to prompt for remote sensing instance segmentation based on visual foundation model[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2306.16269v2. |
[71] | WEI J, WANG Xuezhi, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2201.11903v6. |
[72] | OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedback[J]. Advances in Neural Information Processing Systems, 2022, 35:27730-27744. |
[73] | GAN Zhe, LI Linjie, LI Chunyuan, et al. Vision-language pre-training: basics, recent advances, and future trends[J]. Foundations and Trends® in Computer Graphics and Vision, 2022, 14(3/4):163-352. |
[74] | SHEN Qiuhong, YANG Xingyi, WANG Xinchao. Anything-3D: towards single-view anything reconstruction in the wild[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2304.10261v1. |
[75] | YANG X, ZHOU D, LIU S, et al. Deep model reassembly[J]. Advances in Neural Information Processing Systems, 2022, 35:25739-25753. |
[76] | XI Zhiheng, CHEN Wenxiang, GUO Xin, et al. The rise and potential of large language model based agents: a survey[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2309.07864v3. |
[77] | CONG Y, KHANNA S, MENG C, et al. Satmae: pre-training transformers for temporal and multi-spectral satellite imagery[J]. Advances in Neural Information Processing Systems, 2022, 35:197-211. |
[78] | WANG Di, ZHANG Qiming, XU Yufei, et al. Advancing plain vision transformer toward remote sensing foundation model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5607315. |
[79] | LIU Fan, CHEN Delong, GUAN Z, et al. RemoteCLIP: a vision language foundation model for remote sensing[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2306.11029v4. |
[80] | ZHANG Zilun, ZHAO Tiancheng, GUO Yulong, et al. RS5M: a large scale vision-language dataset for remote sensing vision-language foundation model[EB/OL]. [2024-02-15]. http://export.arxiv.org/abs/2306.11300v4. |
[81] | WANG Di, ZHANG Jing, DU Bo, et al. SAMRS: scaling-up remote sensing segmentation dataset with segment anything model[EB/OL]. [2024-02-15]. https://arxiv.org/abs/2305.02034. |
[1] | 石岩, 王达, 邓敏, 杨学习. 时空异常探测:从数据驱动到知识驱动的内涵转变与实现路径[J]. 测绘学报, 2024, 53(8): 1493-1504. |
[2] | 鄢薪, 慎利, 潘俊杰, 戴延帅, 王继成, 郑晓莉, 李志林. 多尺度特征融合与空间优化的弱监督高分遥感建筑变化检测[J]. 测绘学报, 2024, 53(8): 1586-1597. |
[3] | 布金伟, 余科根, 汪秋兰, 李玲惠, 刘馨雨, 左小清, 常军. 融合星载GNSS-R数据和多变量参数全球海洋有效波高深度学习反演法[J]. 测绘学报, 2024, 53(7): 1321-1335. |
[4] | 江利明, 邵益, 周志伟, 马培峰, 王腾. 智能化InSAR数据处理研究进展、挑战与展望[J]. 测绘学报, 2024, 53(6): 1037-1056. |
[5] | 郭迟, 刘阳, 罗亚荣, 刘经南, 张全. 图像语义信息在视觉SLAM中的应用研究进展[J]. 测绘学报, 2024, 53(6): 1057-1076. |
[6] | 龚循强, 汪宏宇, 鲁铁定, 游为. 高铁桥墩沉降的通用渐进分解长期预测网络模型[J]. 测绘学报, 2024, 53(6): 1113-1127. |
[7] | 顾海燕, 杨懿, 李海涛, 孙立坚, 丁少鹏, 刘世琦. 高分辨率遥感影像样本库动态构建与智能解译应用[J]. 测绘学报, 2024, 53(6): 1165-1179. |
[8] | 丁少鹏, 卢秀山, 刘如飞, 杨懿, 顾海燕, 李海涛. 联合目标特征引导与多重注意力的建筑物变化检测[J]. 测绘学报, 2024, 53(6): 1224-1235. |
[9] | 刘慧敏, 张陈为, 谌恺祺, 邓敏, 彭翀. 基于深度学习的城市PM2.5浓度时空分布预测及不确定性评估[J]. 测绘学报, 2024, 53(4): 750-760. |
[10] | 赵飞, 李兆正, 甘泉, 高祖瑜, 王湛初, 杜清运, 王振声, 沈洋, 潘威. 结合SAM大模型和数学形态学的历史地图水系信息提取方法[J]. 测绘学报, 2024, 53(4): 761-772. |
[11] | 曹帆之, 石添鑫, 韩开杨, 汪璞, 安玮. 多模态遥感图像模板匹配Log-Gabor滤波方法[J]. 测绘学报, 2024, 53(3): 526-536. |
[12] | 孙传猛, 魏宇, 李欣宇, 马铁华, 武志博. 复杂场景下无水尺水位的影像水位反演智能检测方法[J]. 测绘学报, 2024, 53(3): 558-568. |
[13] | 廖钊宏, 张依晨, 杨飚, 林明春, 孙文博, 高智. 基于Swin Transformer-CNN的单目遥感影像高程估计方法及其在公路建设场景中的应用[J]. 测绘学报, 2024, 53(2): 344-352. |
[14] | 林云浩, 王艳军, 李少春, 蔡恒藩. 一种耦合DeepLab与Transformer的农作物种植类型遥感精细分类方法[J]. 测绘学报, 2024, 53(2): 353-366. |
[15] | 张永军, 李彦胜, 党博, 武康, 郭昕, 王剑, 陈景东, 杨铭. 多模态遥感基础大模型:研究现状与未来展望[J]. 测绘学报, 2024, 53(10): 1942-1954. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||