[1] GEHRKE S, MORIN K, DOWNEY M, et al. Semi-global matching:an alternative to LiDAR for dsm generation?[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, XXXVIII-B1:1-6. [2] DE FRANCHIS C, MEINHARDT-LLOPIS E, MICHEL J, et al. An automatic and modular stereo pipeline for pushbroom images[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, II-3:49-56. [3] ALBANWAN H, QIN Rongjun. An adaptive and image-guided fusion for stereo satellite image derived digital surface models[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(4):1-9. [4] 余东行, 徐青, 赵传, 等. 注意力引导特征融合与联合学习的遥感影像场景分类[J]. 测绘学报, 2023, 52(4):624-637.DOI:10.11947/J.AGCS.2023.20210659. YU Donghang, XU Qing, ZHAO Chuan, et al. Attention-guided feature fusion and joint learning for remote sensing image scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4):624-637.DOI:10.11947/J.AGCS.2023.20210659. [5] 胡明洪, 李佳田, 姚彦吉, 等. 结合多路径的高分辨率遥感影像建筑物提取SER-UNet算法[J]. 测绘学报, 2023, 52(5):808-817.DOI:10.11947/J.AGCS.2023.20210691. HU Minghong, LI Jiatian, YAO Yanji, et al. SER-UNet algorithm for building extraction from high-resolution remote sensing image combined with multipath[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5):808-817.DOI:10.11947/J.AGCS.2023.20210691. [6] WANG Yanjun, LI Shaochun, WANG Mengjie, et al. A simple deep learning network for classification of 3D mobile LiDAR point clouds[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3):49-59. [7] HONG Danfeng, GAO Lianru, YAO Jing, et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):5966-5978. [8] HONG Danfeng, HAN Zhu, YAO Jing, et al. Spectral former:rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:1-15. [9] YAO Jing, CAO Xiangyong, HONG Danfeng, et al. Semi-active convolutional neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 61:1-15. [10] XIONG Zhitong, CHEN Sining, SHI Yilei, et al. Disentangled latent transformer for interpretable monocular height estimation[EB/OL].[2023-07-10]. https://arxiv.org/abs/2201.06357.pdf. [11] MOU Lichao, ZHU Xiaoxiang. IM2HEIGHT:height estimation from single monocular imagery via fully residual convolutional-deconvolutional network[EB/OL].[2023-10-25]. https://arxiv.org/abs/1802.10249.pdf. [12] GHAMISI P, YOKOYA N. IMG2DSM:height simulation from single imagery using conditional generative adversarial net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5):794-798. [13] PAOLETTI M E, HAUT J M, GHAMISI P, et al. U-IMG2DSM:unpaired simulation of digital surface models with generative adversarial networks[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(7):1288-1292. [14] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words:transformers for image recognition at scale[EB/OL].[2023-05-20]. https://arxiv.org/abs/2010.11929.pdf. [15] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision.Montreal:IEEE, 2021:10012-10022. [16] EIGEN D, PUHRSCH C, FERGUS R. Depth map prediction from a single image using a multi-scale deep network[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal:ACM Press, 2014:2366-2374. [17] 张聪, 马燕新, 万建伟, 等. 基于通道注意力机制的单目深度估计[J]. 信号处理, 2022,38(11):2332-2341. ZHANG Cong, MA Yanxin, WAN Jianwei, et al.Multi-scale monocular depth estimation network based on channel attention[J]. Journal of Signal Processing, 2022, 38(11):2332-2341. [18] 蓝玲玲. 基于深度学习的单目深度估计研究[D]. 昆明:云南师范大学,2022. LAN Lingling. Research on monocular depth estimation based on deep learning[D]. Kunming:Yunnan Normal University,2022. [19] 朱孟飞. 基于深度学习的水下单目深度估计方法研究[D]. 上海:上海海洋大学,2022. ZHU Mengfei. Research on estimation method of underwater monocular depth based on deep learning[D]. Shanghai:Shanghai Ocean University,2022. [20] JOHNSTON A, CARNEIRO G. Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE, 2020:4756-4765. [21] FAROOQ BHAT S, ALHASHIM I, WONKA P. AdaBins:depth estimation using adaptive bins[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE, 2021:4009-4018. [22] LI Zhenyu, WANG Xuyang, LIU Xianming, et al. Bins former:revisiting adaptive bins for monocular depth estimation[EB/OL].[2023-10-25]. https://arxiv.org/abs/2204.00987.pdf. [23] ZHAO Qi, LIU Jiahui, LI Yuewen, et al. Semantic segmentation with attention mechanism for remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 61:1-13. [24] WANG Yufeng, DING Wenrui, ZHANG Ruiqian, et al. Boundary-aware multitask learning for remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:951-963. [25] XING Siyuan, DONG Qiulei, HU Zhanyi. SCE-net:self- and cross-enhancement network for single-view height estimation and semantic segmentation[J]. Remote Sensing, 2022, 14(9):2252. [26] SRIVASTAVA S, VOLPI M, TUIA D. Joint height estimation and semantic labeling of monocular aerial images with CNNS[C]//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium. Fort Worth:IEEE, 2017:5173-5176. [27] CARVALHO M, LE SAUX B, TROUVE-PELOUX P, et al. On regression losses for deep depth estimation[C]//Proceedings of the 25th IEEE International Conference on Image Processing. Athens:IEEE, 2018:2915-2919. [28] ZHANG Yiteng, CHEN Xuejin. Multi-path fusion network for high-resolution height estimation from a single orthophoto[C]//Proceedings of 2019 IEEE International Conference on Multimedia & Expo Workshops. Shanghai:IEEE, 2019:186-191. [29] AMIRKOLAEE H A, AREFI H. Height estimation from single aerial images using a deep convolutional encoder-decoder network[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149:50-66. [30] ALIDOOST F, AREFI H, TOMBARI F. 2D image-to-3D model:knowledge-based 3D building reconstruction (3DBR) using single aerial images and convolutional neural networks (CNNs)[J]. Remote Sensing, 2019, 11(19):2219. [31] LIU C J, KRYLOV V A, KANE P, et al. IM2ELEVATION:building height estimation from single-view aerial imagery[J]. Remote Sensing, 2020, 12(17):2719. [32] CARVALHO M, LE SAUX B, TROUVE-PELOUX P, et al. Multitask learning of height and semantics from aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(8):1391-1395. |