测绘学报 ›› 2023, Vol. 52 ›› Issue (7): 1164-1174.doi: 10.11947/j.AGCS.2023.20220493

• 高光谱遥感技术专刊 • 上一篇    下一篇

谱间对比学习的高光谱图像无监督特征提取

杭仁龙1,2, 李成相1,2, 刘青山1,2   

  1. 1. 南京信息工程大学计算机学院, 江苏 南京 210044;
    2. 江苏省大气环境与装备技术协同创新中心, 江苏 南京 210044
  • 收稿日期:2022-08-10 修回日期:2023-04-04 发布日期:2023-07-31
  • 通讯作者: 刘青山 E-mail:qsliu@nuist.edu.cn
  • 作者简介:杭仁龙(1988-),男,博士,副教授,主要研究方向为模式识别与遥感图像分析。E-mail:renlong_hang@163.com
  • 基金资助:
    科技创新2030—“新一代人工智能”重大项目(2021ZD0112200);国家自然科学基金(U21B2044;U21B2049;61906096)

Inter-spectral contrast learning based unsupervised feature extraction for hyperspectral images

HANG Renlong1,2, LI Chengxiang1,2, LIU Qingshan1,2   

  1. 1. School of Computer, Nanjing University of Information Science and Technology, Nanjing 210044, China;
    2. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China
  • Received:2022-08-10 Revised:2023-04-04 Published:2023-07-31
  • Supported by:
    The National Key Research and Development Program of China(No. 2021ZD0112200); The National Natural Science Foundation of China(Nos. U21B2044; U21B2049; 61906096)

摘要: 深度学习通过逐层抽象的方式提取输入数据的深层特征,近年来在高光谱图像分类领域得到了广泛的应用。现有的高光谱图像深度特征提取方法大多属于有监督学习模型,其训练过程需要大量标记样本,而高光谱图像逐像素的标注困难且费时。为此,本文提出了一种基于谱间对比学习的无监督深度学习模型。无须对样本进行标注,仅通过建模不同光谱波段之间的关系便可实现特征提取。具体而言,由于高光谱图像不同的光谱通道刻画了同一物体在不同电磁波段的响应程度,因此必然存在一个特征空间,使得不同通道的光谱信息具有相似的表征。受此启发,本文首先将高维光谱信息分成两组,然后利用多层卷积操作分别提取每组波段的特征,最后对比不同样本所提取的特征,通过对比损失函数来优化模型。为了测试本文方法的性能,将其应用于高光谱图像分类任务中,在Houston 2013、Pavia University和WHU-Hi-Longkou 3个常用的数据集上进行了验证。试验结果表明,在每类仅使用10个训练样本的前提下,本文所提出的无监督学习模型能够获得比主成分分析、自编码器等常见的无监督模型更优越的分类性能。

关键词: 无监督学习, 深度学习, 高光谱图像, 特征提取

Abstract: Deep learning is able to extract high-level features from input data via layer by layer abstraction. In recent years, it has been widely used in hyperspectral image classification. Most of the existing deep learning-based feature extraction methods for hyperspectral images belong to supervised learning models, which require a large number of labeled samples in the training process, but it is difficult and time-consuming to label hyperspectral images pixel by pixel. Therefore, we propose an unsupervised deep learning model based on inter-spectral contrast learning in this paper. It can extract features by modeling the relationship between different spectral bands without annotation of samples. Specifically, because different spectral channels of hyperspectral image depict the response degree of the same object in different electromagnetic spectrum, there must be a feature space, which makes the spectral information of different channels have similar characterization. Inspired by this, we first divide the high-dimensional spectral information into two groups, and then extract the features of each group using multi-layer convolution operations. Finally, the features extracted from different samples are compared and a contrastive loss function is constructed to optimize the model parameters. To test the performance of the proposed model, it was applied to a hyperspectral image classification task and validated on three commonly used data sets, including Houston 2013, Pavia University and WHU-Hi-Longkou. Experimental results show that using only 10 training samples in each class, the proposed unsupervised learning model can obtain better classification performance than the commonly used unsupervised models such as principal component analysis and auto-encoder.

Key words: unsupervised learning, deep learning, hyperspectral image, feature extraction

中图分类号: