测绘学报 ›› 2023, Vol. 52 ›› Issue (7): 1175-1186.doi: 10.11947/j.AGCS.2023.20220237

• 高光谱遥感技术专刊 • 上一篇    下一篇

基于自适应上下文聚合网络的双高遥感影像分类

胡鑫1,2, 王心宇3, 钟燕飞2   

  1. 1. 广州市城市规划勘测设计研究院, 广东 广州 510060;
    2. 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430079;
    3. 武汉大学遥感信息工程学院, 湖北 武汉 430079
  • 收稿日期:2022-04-05 修回日期:2023-06-12 发布日期:2023-07-31
  • 通讯作者: 王心宇 E-mail:wangxinyu@whu.edu.cn
  • 作者简介:胡鑫(1994-),男,博士,研究方向为高光谱遥感信息处理。E-mail:whu_huxin@whu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB3903405);国家自然科学基金(42071350;42101327)

Adaptive context aggregation network for H2 remote sensing imagery classification

HU Xin1,2, WANG Xinyu3, ZHONG Yanfei2   

  1. 1. Guangzhou Urban Planning and Design Survey Research Institute, Guangzhou 510060, China;
    2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;
    3. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
  • Received:2022-04-05 Revised:2023-06-12 Published:2023-07-31
  • Supported by:
    The National Key Research and Development Program of China (No. 2022YFB3903405); The National Natural Science Foundation of China (Nos. 42071350; 42101327)

摘要: 融合高光谱和高空间分辨率(双高)遥感的优势可以实现地物目标更为全面和精细的属性识别。然而,空间分辨率的显著提升使得双高影像中地物细节特征凸显出来,呈现出极高的空谱异质性,进而导致同物异谱现象大量发生,地物类内方差明显增大。基于此,本文提出一种局部-全局上下文信息自适应聚合的快速双高影像分类框架(adaptive context aggregation network,ACANet),通过编码-解码的全卷积网络架构顾及全局空谱信息,在编码器中构建局部到全局的长距离上下文感知模块缓解双高影像极大的类内方差,在解码器中构建自适应上下文聚合模块进一步实现局部和全局的上下文信息自适应聚合。本文方法在WHU-Hi双高影像分类基准数据集中取得了优异的分类性能,试验表明可以很好缓解双高影像极高空谱异质性对地物精细分类的影响。

关键词: 高空间高光谱分辨率影像, 地物精细分类, 深度学习, 上下文信息

Abstract: High spectral and spatial resolution (H2) remote sensing imagery can achieve more comprehensive and precise attribute recognition of ground objects. However, the details of ground objects are gradually revealed with the significant improvement of the spatial resolution, which makes the H2 images show extremely high spectral variability and spatial heterogeneity, and then the phenomenon of the same class with different spectrums occurs in large numbers; the intraclass variance increases significantly. As a result, an adaptive aggregation context network was proposed for H2 image classification, which uses a full convolution network with encoder-decoder architecture to achieve global spectrum-spatial fusion. A local-to-global long-distance context module was designed to alleviate the intraclass variance in the encoder module. Then an adaptive context aggregation module was constructed in the decoder module for the adaptive aggregation of local and global context information. ACANet has achieved excellent performance in the WHU-Hi benchmark dataset, and the experiments show that it can sufficiently alleviate the impact of the spatial-spectrum heterogeneity of the H2 image in the precise classification.

Key words: hyperspectral image with high spatial resolution, precise classification, deep learning, context information

中图分类号: