[1] 童庆禧, 张兵, 郑兰芬. 高光谱遥感:原理、技术与应用[M].北京:高等教育出版社,2006. TONG Qingxi, ZHANG Bing,ZHENG Lanfen. Hyperspectral remote sensing:principle, technology and application[M].Beijing:Higher Education Press,2006. [2] 张良培, 张立福. 高光谱遥感[M].北京:测绘出版社,2011. ZHANG Liangpei, ZHANG Lifu. Hyperspectral remote sensing[M].Beijing:Surveying and Mapping Press,2011. [3] 杜培军, 夏俊士, 薛朝辉,等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2):236-256. DU Peijun, XIA Junshi, XUE Zhaohui, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2):236-256. [4] ZHONG Yanfei, WANG Xinyu, XU Yao, et al. Mini-UAV-borne hyperspectral remote sensing:from observation and processing to applications[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(4):46-62. [5] ZHONG Y, HU X, LUO C, et al. WHU-Hi:UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF[J]. Remote Sensing of Environment, 2020, 250:112012. [6] HU Xin, ZHONG Yanfei, WANG Xinyu, et al. SPNet:spectral patching end-to-end classification network for UAV-borne hyperspectral imagery with high spatial and spectral resolutions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-17. [7] HU Xin, WANG Xinyu, ZHONG Yanfei, et al. S3ANet:spectral-spatial-scale attention network for end-to-end precise crop classification based on UAV-borne H2 imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183:147-163. [8] MIRZAPOUR F, GHASSEMIAN H. Improving hyperspectral image classification by combining spectral, texture and shape features[J]. International Journal of Remote Sensing, 2015, 36(4):1070-1096. [9] GHAMISI P, MAGGIORI E, LI Shutao, et al. New frontiers in spectral-spatial hyperspectral image classification:the latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation and deep learning[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(3):10-43. [10] LI Wei, PRASAD S, FOWLER J E. Hyperspectral image classification using Gaussian mixture models and Markov random fields[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):153-157. [11] SUN Shujin, ZHONG Ping, XIAO Huaitie, et al. An MRF model-based active learning framework for the spectral-spatial classification of hyperspectral imagery[J].IEEE Journal of Selected Topics in Signal Processing, 2015, 9(6):1074-1088. [12] ZHAO J,ZHONG Y,JIA T,et al.Spectral-spatial classification of hyperspectral imagery with cooperative game[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 135:31-42. [13] 魏立飞, 余铭, 钟燕飞, 等.空-谱融合的条件随机场高光谱影像分类方法[J]. 测绘学报,2020,49(3):343-354.DOI:10.11947/j.AGCS.2020.20190042. WEI Lifei, YU Ming, ZHONG Yanfei, et al. Hyperspectral image classification method based on space-spectral fusion conditional random field[J]. Acta Geodaetica et Cartographica Sinica,2020,49(3):343-354.DOI:10.11947/j.AGCS.2020.20190042. [14] LI Shutao, SONG Weiwei, FANG Leyuan, et al. Deep learning for hyperspectral image classification:an overview[J].IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6690-6709. [15] CHEN Yushi, LIN Zhouhan, ZHAO Xing, et al. Deep learning-based classification of hyperspectral data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2094-2107. [16] 刘冰, 余旭初, 张鹏强, 等. 联合空-谱信息的高光谱影像深度三维卷积网络分类[J]. 测绘学报,2019,48(1):53-63.DOI:10.11947/j.AGCS.2019.20170578. LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. Deep 3D convolutional network combined with spatial-spectral features for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica,2019,48(1):53-63.DOI:10.11947/j.AGCS.2019.20170578. [17] 左溪冰, 刘冰, 余旭初,等.高光谱影像小样本分类的图卷积网络方法[J]. 测绘学报,2021,50(10):1358-1369.DOI:10.11947/j.AGCS.2021.20200155. ZUO Xibing, LIU Bing, YU Xuchu, et al. Graph convolutional network method for small sample classification of hyperspectral images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10):1358-1369. DOI:10.11947/j.AGCS.2021.20200155. [18] ZHENG Zhuo, ZHONG Yanfei, MA Ailong, et al. FPGA:fast patch-free global learning framework for fully end-to-end hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8):5612-5626. [19] XU Yonghao, DU Bo, ZHANG Liangpei. Beyond the patchwise classification:spectral-spatial fully convolutional networks for hyperspectral image classification[J].IEEE Transactions on Big Data, 2020, 6(3):492-506. [20] SHEN Yu, ZHU Sijie, CHEN Chen, et al. Efficient deep learning of nonlocal features for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):6029-6043. [21] WANG Di, DU Bo, ZHANG Liangpei. Fully contextual network for hyperspectral scene parsing[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-16. [22] HOU Qibin, ZHANG Li, CHENG Mingming, et al. Strip pooling:rethinking spatial pooling for scene parsing[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle:IEEE,2020:4002-4011. [23] CAO Yue, XU Jiarui, LIN S, et al. GCNet:non-local networks meet squeeze-excitation networks and beyond[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).Seoul:IEEE, 2020:1971-1980. [24] HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023. [25] CHANG C C, LIN C J. LIBSVM:a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011,2(3):1-27. [26] MEI Xiaoguang, PAN Erting, MA Yong, et al. Spectral-spatial attention networks for hyperspectral image classification[J]. Remote Sensing, 2019, 11(8):963. [27] ZHONG Zilong, LI J, LUO Zhiming, et al. Spectral-spatial residual network for hyperspectral image classification:a 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):847-858. [28] PAOLETTI M E, HAUT J M, FERNANDEZ-BELTRAN R, et al. Deep pyramidal residual networks for spectral-spatial hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2):740-754. |