
测绘学报 ›› 2025, Vol. 54 ›› Issue (7): 1332-1345.doi: 10.11947/j.AGCS.2025.20240337
收稿日期:2024-08-19
修回日期:2025-05-06
出版日期:2025-08-18
发布日期:2025-08-18
通讯作者:
王中辉
E-mail:wyq1584816526@163.com;1449041349@qq.com
作者简介:王亚青(2000—),男,硕士生,研究方向为地图综合、地图数据智能处理。E-mail:wyq1584816526@163.com
基金资助:
Yaqing WANG1,2,3(
), Zhonghui WANG1,2,3(
)
Received:2024-08-19
Revised:2025-05-06
Online:2025-08-18
Published:2025-08-18
Contact:
Zhonghui WANG
E-mail:wyq1584816526@163.com;1449041349@qq.com
About author:WANG Yaqing (2000—), male, postgraduate, majors in map generalization and intelligent processing of map data. E-mail: wyq1584816526@163.com
Supported by:摘要:
河系选取是在大比例尺地图向小比例尺地图变换时,由于空间限制,对重要河流进行优先选取保留,而舍弃其他河流的地图综合过程。现有深度学习方法主要处理单一关系的河系同构图,对河段连接关系信息利用不充分,导致选取准确率低、选取结果拓扑连通性差等问题。为此,本文提出一种异构图卷积网络支持下的河系自动选取方法。首先,将河段作为节点,河段间连接关系作为边,并根据不同的连接关系将边划分为3种类型,构建河系异构图;然后,将选取标签和河系异构图输入RGCN模型进行信息聚合,得到图节点的分类结果;最后,基于分类结果选取河段,实现河系的自动选取。本文选用1∶24 000和1∶250 000两种比例尺的河流数据进行选取试验,结果表明,本文方法在选取准确率上有显著提升,精确率、召回率、F1值和AUC等指标均超过92%;此外还减少了因河段漏选导致的河流断开问题,更好地保持了河网的拓扑连通性和形态相似性。
中图分类号:
王亚青, 王中辉. 异构图卷积网络支持下的河系自动选取方法[J]. 测绘学报, 2025, 54(7): 1332-1345.
Yaqing WANG, Zhonghui WANG. River network automated selection method based on heterogeneous graph convolutional networks[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1332-1345.
| [1] | 王家耀, 王光霞, 江南, 等. 地图学原理与方法[M]. 3版. 北京: 科学出版社, 2023. |
| WANG Jiayao, WANG Guangxia, JIANG Nan, et al. Principles and methods of cartography[M]. 3rd ed. Beijing: Science Press, 2023. | |
| [2] | LIU Jingnan, ZHAN Jiao, GUO Chi, et al. Data logic structure and key technologies on intelligent high-precision map[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 1-17. |
| [3] | STOTER J, POST M, VANALTENA V, et al. Fully automated generalization of a 1∶50k map from 1∶10k data[J]. Cartography and Geographic Information Science, 2014, 41(1): 1-13. |
| [4] | 何宗宜. 地图数据处理模型的原理与方法[M]. 武汉: 武汉大学出版社, 2004. |
| HE Zongyi. Elements and methods of model for cartographical data processing[M]. Wuhan: Wuhan University Press, 2004. | |
| [5] | 张青年. 顾及密度差异的河系简化[J]. 测绘学报, 2006, 35(2): 191-196. |
| ZHANG Qingnian. Generalization of drainage network with density differences[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(2): 191-196. | |
| [6] | 张园玉, 李霖, 金玉平, 等. 基于图论的树状河系结构化绘制模型研究[J]. 武汉大学学报(信息科学版), 2004, 29(6): 537-539, 543. |
| ZHANG Yuanyu, LI Lin, JIN Yuping, et al. Structured design of dendritic river networks based on graph[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 537-539, 543. | |
| [7] | 武芳, 谭笑, 翟仁健, 等. 基于知识表达和推理的河网自动选取[J]. 辽宁工程技术大学学报, 2007, 26(2): 183-186. |
| WU Fang, TAN Xiao, ZHAI Renjian, et al. Automated river selection based on cartographic knowledge representation and reasoning[J]. Journal of Liaoning Technical University, 2007, 26(2): 183-186. | |
| [8] | 谭笑. 基于知识的线状水系要素自动综合研究[D]. 郑州: 信息工程大学, 2005. |
| TAN Xiao. Research of linear drainage features automated generalizaton based on knowledge[D]. Zhengzhou: Information Engineering University, 2005. | |
| [9] | 邵黎霞, 何宗宜, 艾自兴, 等. 基于BP神经网络的河系自动综合研究[J]. 武汉大学学报(信息科学版), 2004, 29(6): 555-557. |
| SHAO Lixia, HE Zongyi, AI Zixing, et al. Automatic generalization of river network based on BP neural network techniques[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 555-557. | |
| [10] | 翟仁健, 武芳, 邓红艳, 等. 基于遗传多目标优化的人工河网自动选取模型[J]. 测绘学报, 2008, 37(1): 108-113. |
| ZHAI Renjian, WU Fang, DENG Hongyan, et al. An automated selection model of ditch based on multi-objective optimization by genetic algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(1): 108-113. | |
| [11] | SEN A, GOKGOZ T. An experimental approach for selection/elimination in stream network generalization using support vector machines[J]. Geocarto International, 2015, 30(3): 311-329. |
| [12] | WANG Di, QIAN Haizhong. Graph neural network method for the intelligent selection of river system[J]. Geocarto International, 2023, 38(1): 2252762. |
| [13] | YU Huafei, AI Tinghua, YANG Min, et al. Integrating domain knowledge and graph convolutional neural networks to support river network selection[J]. Transactions in GIS, 2023, 27(7): 1898-1927. |
| [14] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2024-03-04]. https://arxiv.org/abs/1609.02907v4. |
| [15] | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[EB/OL]. [2024-03-04]. https://arxiv.org/abs/1706.02216v4. |
| [16] | 张瑞. 面向异构图节点分类问题的图卷积网络研究[D]. 上海: 华东师范大学, 2023. |
| ZHANG Rui. Graph convolutional networks for node classification tasks on heterophilic graphs[D]. Shanghai: East China Normal University, 2023. | |
| [17] | SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th European Semantic Web Conference. Berlin: Springer, 2018: 593-607. |
| [18] | 贾香恩, 董一鸿, 朱锋, 等. 异构图卷积网络研究进展[J]. 计算机工程与应用, 2021, 57(9): 36-49. |
| JIA Xiang'en, DONG Yihong, ZHU Feng, et al. Research progress of heterogeneous graph convolutional networks[J]. Computer Engineering and Applications, 2021, 57(9): 36-49. | |
| [19] | 刘一漩, 张晶, 赵进勇, 等. 赤水河弯曲河段地貌特征参数统计分析[J]. 水生态学杂志, 2022, 43(3): 44-50. |
| LIU Yixuan, ZHANG Jing, ZHAO Jinyong, et al. Statistical analysis of geomorphological parameters in meandering sections of Chishui River[J]. Journal of Hydroecology, 2022, 43(3): 44-50. | |
| [20] | WANG Wenning, YAN Haowen, LU Xiaomin, et al. Drainage pattern recognition method considering local basin shape based on graph neural network[J]. International Journal of Digital Earth, 2023, 16(1): 593-619. |
| [21] | 王文宁. 多形态河系的流域基本单元特征分析、识别及相似度计算[D]. 兰州: 兰州交通大学, 2023. |
| WANG Wenning. Characteristics analysis, recognition, similarity calculation of the catchment basic units for multiple drainage patterns[D]. Lanzhou: Lanzhou Jiatong University, 2023. | |
| [22] | 艾廷华, 刘耀林, 黄亚锋. 河网汇水区域的层次化剖分与地图综合[J]. 测绘学报, 2007, 36(2): 231-236, 243. |
| AI Tinghua, LIU Yaolin, HUANG Yafeng. The hierarchical watershed partitioning and generalization of river network[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(2): 231-236, 243. | |
| [23] | 赵春燕. 水系河网的Horton编码与图形综合研究[D]. 武汉: 武汉大学, 2004. |
| ZHAO Chunyan. Research on horton code and graphic generalization of catchment[D]. Wuhan: Wuhan University, 2004. | |
| [24] | 黄子叶, 王易初, 倪晋仁. 汉江流域河网分级特征研究[J]. 北京大学学报(自然科学版), 2021, 57(2): 351-360. |
| HUANG Ziye, WANG Yichu, NI Jinren. Hierarchical characteristics of river network in Hanjiang basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(2): 351-360. | |
| [25] | 高翔. 基于关系图卷积神经网络的多标签事件预测[J]. 电讯技术, 2023, 63(4): 457-465. |
| GAO Xiang. Multi-label event prediction based on relational graph convolutional neural network[J]. Telecommunication Engineering, 2023, 63(4): 457-465. | |
| [26] | 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780. |
| XU Bingbing, CEN Keting, HUANG Junjie, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780. | |
| [27] | THANAPALASINGAM T, VAN BERKEL L, BLOEM P, et al. Relational graph convolutional networks: a closer look[J]. PeerJ Computer Science, 2022, 8: e1073. |
| [28] | YU Huafei, AI Tinghua, YANG Min, et al. A recognition method for drainage patterns using a graph convolutional network[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 107: 102696. |
| [29] | 刘怀湘, 王兆印. 典型河网形态特征与分布[J]. 水利学报, 2007, 38(11): 1354-1357. |
| LIU Huaixiang, WANG Zhaoyin. Morphological feature and distribution of typical river networks[J]. Journal of Hydraulic Engineering, 2007, 38(11): 1354-1357. | |
| [30] | 杨飞, 王中辉. 河系几何相似性的层次度量方法[J]. 地球信息科学学报, 2021, 23(12): 2139-2150. |
| YANG Fei, WANG Zhonghui. River systems geometric similarity measurement method under hierarchical analysis[J]. Journal of Geo-information Science, 2021, 23(12): 2139-2150. |
| [1] | 孟妮娜, 李凤梅, 周校东. 数据与认知双驱动的建筑物群制图综合结果与尺度一致性识别[J]. 测绘学报, 2025, 54(7): 1318-1331. |
| [2] | 安晓亚, 郭伟茹, 张鹏鑫, 李欣欣, 石磊. 顾及几何位置和移动特征相似性的船舶轨迹聚类方法[J]. 测绘学报, 2025, 54(6): 1107-1121. |
| [3] | 王超, 陈天宇, 张同, AhmedTanvir, 纪立强, 谢涛, 杨佳俊, 王帅. 基于全局差分增强模块和平衡惩罚损失的多源光学遥感影像变化检测[J]. 测绘学报, 2025, 54(5): 873-887. |
| [4] | 罗卿莉, 李雪岩, 黄国满, 陈红辉, 薛铭龙, 李健. AOSN:α-最优网络模型的山区单通道SAR高程重建方法[J]. 测绘学报, 2025, 54(5): 888-898. |
| [5] | 涂伟, 池向沅, 赵天鸿, 杨剑, 朱世平, 陈德莉. 城市排水管网流量预测多视图时空图神经网络模型[J]. 测绘学报, 2025, 54(2): 334-344. |
| [6] | 张正华, 陈国良. 一种轻量且旋转不变的激光雷达位置识别网络[J]. 测绘学报, 2025, 54(1): 90-103. |
| [7] | 石岩, 王达, 邓敏, 杨学习. 时空异常探测:从数据驱动到知识驱动的内涵转变与实现路径[J]. 测绘学报, 2024, 53(8): 1493-1504. |
| [8] | 鄢薪, 慎利, 潘俊杰, 戴延帅, 王继成, 郑晓莉, 李志林. 多尺度特征融合与空间优化的弱监督高分遥感建筑变化检测[J]. 测绘学报, 2024, 53(8): 1586-1597. |
| [9] | 刘鹏程, 马宏然, 周洋, 邵子芹. 一种曲线数据压缩的自编码器神经网络方法[J]. 测绘学报, 2024, 53(8): 1634-1643. |
| [10] | 布金伟, 余科根, 汪秋兰, 李玲惠, 刘馨雨, 左小清, 常军. 融合星载GNSS-R数据和多变量参数全球海洋有效波高深度学习反演法[J]. 测绘学报, 2024, 53(7): 1321-1335. |
| [11] | 江利明, 邵益, 周志伟, 马培峰, 王腾. 智能化InSAR数据处理研究进展、挑战与展望[J]. 测绘学报, 2024, 53(6): 1037-1056. |
| [12] | 郭迟, 刘阳, 罗亚荣, 刘经南, 张全. 图像语义信息在视觉SLAM中的应用研究进展[J]. 测绘学报, 2024, 53(6): 1057-1076. |
| [13] | 龚循强, 汪宏宇, 鲁铁定, 游为. 高铁桥墩沉降的通用渐进分解长期预测网络模型[J]. 测绘学报, 2024, 53(6): 1113-1127. |
| [14] | 顾海燕, 杨懿, 李海涛, 孙立坚, 丁少鹏, 刘世琦. 高分辨率遥感影像样本库动态构建与智能解译应用[J]. 测绘学报, 2024, 53(6): 1165-1179. |
| [15] | 丁少鹏, 卢秀山, 刘如飞, 杨懿, 顾海燕, 李海涛. 联合目标特征引导与多重注意力的建筑物变化检测[J]. 测绘学报, 2024, 53(6): 1224-1235. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||