测绘学报 ›› 2025, Vol. 54 ›› Issue (9): 1697-1711.doi: 10.11947/j.AGCS.2025.20240385

• 地图学与地理信息 • 上一篇    下一篇

随机森林和图神经网络支持下的河系自动分级与选取方法

张付兵1,2(), 孙群1(), 徐青1,3,4, 马京振1,5, 黄文君1, 陈若虚1   

  1. 1.信息工程大学地理空间信息学院,河南 郑州 450052
    2.陆军工程大学爆炸冲击防灾减灾全国重点实验室,江苏 南京 210007
    3.智慧中原地理信息技术河南省协同创新中心,河南 郑州 450052
    4.时空感知与智能处理自然资源部重点实验室,河南 郑州 450052
    5.61540部队,陕西 西安 710054
  • 收稿日期:2024-09-16 修回日期:2025-09-15 出版日期:2025-10-10 发布日期:2025-10-10
  • 通讯作者: 孙群 E-mail:zhangfbing@163.com;13503712102@163.com
  • 作者简介:张付兵(1997—),男,博士,讲师,主要研究方向为空间数据挖掘与多尺度表达。E-mail:zhangfbing@163.com
  • 基金资助:
    国家自然科学基金(42101454);中国博士后科学基金(2024M764345)

An automatic river classification and selection method supported by random forest and graph neural network

Fubing ZHANG1,2(), Qun SUN1(), Qing XU1,3,4, Jingzhen MA1,5, Wenjun HUANG1, Ruoxu CHEN1   

  1. 1.Institute of Geospatial Information, University of Information Engineering, Zhengzhou 450052, China
    2.State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact, Army Engineering University of PLA, Nanjing 210007, China
    3.Collaborative Innovation Center of Geo-information Technology for Smart Central Plains, Zhengzhou 450052, China
    4.Key Laboratory of Spatiotemporal Perception and Intelligent processing, Ministry of Natural Resources, Zhengzhou 450052, China
    5.Troops 61540, Xi'an 710054, China
  • Received:2024-09-16 Revised:2025-09-15 Online:2025-10-10 Published:2025-10-10
  • Contact: Qun SUN E-mail:zhangfbing@163.com;13503712102@163.com
  • About author:ZHANG Fubing (1997—), male, PhD, lecturer, majors in spatial data mining and multi-scale representation. E-mail: zhangfbing@163.com
  • Supported by:
    The National Natural Science Foundation of China(42101454);China Postdoctoral Science Foundation(2024M764345)

摘要:

随着深度学习方法在地图制图领域的广泛应用,利用图神经网络解决非结构化矢量地图数据综合问题成为当前研究的热点。针对现有河系分级方法主要从局部结构出发,应用传统机器学习方法未考虑相邻河段之间的局部相关性,且基于图神经网络的河系选取方法仅考虑河段之间拓扑邻接关系的不足,本文提出了一种随机森林和图神经网络支持下的河系自动分级与选取方法。首先,通过融入河系分级知识并通过特征局部标准化处理,利用随机森林算法实现河系自动分级;然后,引入河段之间拓扑邻接关系和空间邻近关系构建双支图神经网络选取模型,通过监督学习实现河段的选取分类;最后,通过兼顾层次分级的连通性保持策略获取河系选取结果。试验结果表明,相较Min-Max标准化和Z-Score标准化,本文河系自动分级精度分别提升了11.42个百分点和12.39个百分点,分级效果更好;相较已有基于图神经网络的河系选取方法,选取精度提升了2.2个百分点,并且与标签数据之间的差异更小。

关键词: 河系选取, 自动分级, 随机森林, 图神经网络, 特征局部标准化

Abstract:

Nowadays, with the widespread use of deep learning methods in the field of cartography, the use of graph neural networks (GNNs) to solve the generalization problems of unstructured vector map data has become a research hotspot. A river network automatic classificationand selection method supported by random forests and GNN is proposed to address the shortcomings of the existing methods, which mainly start from local structures and do not consider the local correlation of adjacent river segments when applying machine learning methods to classify rivers, and only consider the topological relationship of river segments in the process of river network selection. Firstly, incorporating knowledge of river network classification and local standardization of features, the random forest algorithm is used to automatically classify river network. Then, a dual branch GNN selection model is constructed by integrating topological connections and spatial proximity relationships between river segments, and the selected classification of river segments is achieved through supervised learning. Finally, the river network selection results are obtained by adopting a connectivity preservation strategy that considers hierarchical levels. The experimental results show that compared with standardization ways of Min-Max and Z-Score, the automatic classification accuracy of the river network has been improved by 11.42 percentage points and 12.39 percentage points respectively, and the classification effect is better. Compared with existing river network selection methods based on graph neural networks, the selection accuracy has been improved by 2.2 percentage points, and closer to the labeled data.

Key words: river network selection, automatic classification, random forest, graph neural network, feature local standardization

中图分类号: