[1] |
张艺超. 面向遥感图像的深度哈希检索方法研究[D]. 西安: 西安光学精密机械研究所, 2023.
|
|
ZHANG Yichao. Research on deep hash retrieval methods for remote sensing images[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, 2023.
|
[2] |
LI Y, MA J, ZHANG Y. Image retrieval from remote sensing big data: a survey[J]. Information Fusion, 2021, 67: 94-115.
|
[3] |
周维勋. 基于深度学习特征的遥感影像检索研究[D]. 武汉: 武汉大学, 2019.
|
|
ZHOU Weixun. Research on remote sensing image retrieval based on deep learning features[D]. Wuhan: Wuhan University, 2019.
|
[4] |
周玉琢. 基于多注意力机制和语义对齐的跨模态遥感图文检索研究[D]. 武汉: 华中科技大学, 2022.
|
|
ZHOU Yuzhuo. Research on cross modal remote sensing image and text retrieval based on multi attention mechanism and semantic alignment[D]. Wuhan: Huazhong University of Science and Technology, 2022.
|
[5] |
CAO M, LI S, Li J, et al. Image-text retrieval: a survey on recent research and development[J/OL]. [2022-12-16]. https://arxiv.org/abs/2203.14713.
|
[6] |
FAN D, DONG Y, ZHANG Y. Satellite image matching method based on deep convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 90.
|
[7] |
李彦胜, 张永军. 耦合知识图谱和深度学习的新一代遥感影像解译范式[J]. 武汉大学学报(信息科学版), 2022, 47(8): 1176-1190.
|
|
LI Yansheng, ZHANG Yongjun. A new paradigm of remote sensing image interpretation by coupling knowledge graph and deep learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1176-1190.
|
[8] |
JOHNSON J, KRISHNA R, STARK M, et al. Image retrieval using scene graphs[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2015: 3668-3678.
|
[9] |
YOON S, KANG W Y, JEON S, et al. Image-to-image retrieval by learning similarity between scene graphs[C]//Proceedings of 2021 AAAI Conference on Artificial Intelligence, 2021, 35(12): 10718-10726.
|
[10] |
王旭东. 基于图理论的场景图检索方法研究与实现[D]. 西安: 西安电子科技大学, 2021.
|
|
WANG Xudong. Research and implementation of scene image retrieval method based on graph theory[D]. Xi'an: Xidian University, 2021.
|
[11] |
LIN Z, ZHU F, KONG Y, et al. SRSG and S2SG: a model and a dataset for scene graph generation of remote sensing images from segmentation results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11.
|
[12] |
LI P, ZHANG D, WULAMU A, et al. Semantic relation model and dataset for remote sensing scene understanding[J]. ISPRS International Journal of Geo-Information, 2021, 10(7): 488.
|
[13] |
LU X, WANG B, ZHENG X, et al. Exploring models and data for remote sensing image caption generation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(4): 2183-2195.
|
[14] |
ZHU G, ZHANG L, JIANG Y, et al. Scene graph generation: a comprehensive survey[J/OL]. [2022-12-20]. https://arxiv.org/abs/2201.00443.
|
[15] |
ZHOU J, XIE C, GONG S, et al. Data augmentation on graphs: a technical survey[J/OL]. [2022-11-22]. https://arxiv.org/abs/2212.09970.
|
[16] |
CHENG G, WANG J, LI K, et al. Anchor-free oriented proposal generator for object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11.
|
[17] |
XIA G S, HU J, HU F, et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965-3981.
|
[18] |
YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems. New York: Association for Computing Machinery, 2010: 270-279.
|
[19] |
EGENHOFER M J, FRANZOSA R D. Point-set topological spatial relations[J]. International Journal of Geographical Information System, 1991, 5(2): 161-174.
|
[20] |
王大力, 童晓冲, 孟丽, 等. 文本中空间信息的结构化建模与语义定位[J]. 测绘学报, 2023, 52(8): 1398-1410. DOI:.
doi: 10.11947/j.AGCS.2023.20220066
|
|
WANG Dali, TONG Xiaochong, MENG Li, et al. Structural modeling of spatial information in texts and semantic localization[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1398-1410. DOI:.
doi: 10.11947/j.AGCS.2023.20220066
|
[21] |
WANG D, TONG X, DAI C, et al. Voxel modeling and association of ubiquitous spatiotemporal information in natural language texts[J]. International Journal of Digital Earth, 2023, 16(1): 868-890.
|
[22] |
CHEN K, LIU C, CHEN H, et al. RSPrompter: learning to prompt for remote sensing instance segmentation based on visual foundation model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024.
|
[23] |
RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//Proceedings of 2021 International Conference on Machine Learning. Cambridge: JMLR, 2021: 8748-8763.
|
[24] |
CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of 2020 International Conference on Machine Learning. Cambridge: JMLR, 2020: 1597-1607.
|
[25] |
LI Y, GU C, DULLIEN T, et al. Graph matching networks for learning the similarity of graph structured objects[C]//Proceedings of 2019 International Conference on Machine Learning. Cambridge: JMLR, 2019: 3835-3845.
|
[26] |
LI Y, TARLOW D, BROCKSCHMIDT M, et al. Gated graph sequence neural networks[[J/OL]. [2022-12-23]. https://arxiv.org/abs/1511.05493.
|
[27] |
LI Y, VAN GEMERT J. Deep unsupervised image hashing by maximizing bit entropy[C]//Proceedings of 2021 AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021, 35(3): 2002-2010.
|
[28] |
SU S, ZHANG C, HAN K, et al. Greedy Hash: towards fast optimization for accurate Hash coding in CNN[J]. Advances in Neural Information Processing Systems, 2018, 31.
|
[29] |
HE K, FAN H, WU Y, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2020: 9729-9738.
|
[30] |
DJOUFACK B L. CLIP-RS: a cross-modal remote sensing image retrieval based on CLIP, a Northern Virginia case study[D]. Blacksburg: Virginia Tech., 2022.
|
[31] |
WANG Y, WANG L, LI Y, et al. A theoretical analysis of NDCG type ranking measures[C]//Proceedings of 2013 Conference on Learning Theory. Cambridge: JMLR, 2013: 25-54.
|