测绘学报 ›› 2025, Vol. 54 ›› Issue (8): 1347-1370.doi: 10.11947/j.AGCS.2025.20240417

• 综述 •    下一篇

遥感智能变化检测的深度学习方法:演变与发展趋势

张继贤1(), 顾海燕2(), 倪欢3, 李海涛2, 杨懿2, 丁少鹏4, 隋淞蔓4   

  1. 1.莫干山地信实验室,浙江 湖州 313299
    2.中国测绘科学研究院,北京 100830
    3.南京信息工程大学,江苏 南京 210044
    4.山东科技大学,山东 青岛 266590
  • 收稿日期:2024-10-10 修回日期:2025-07-26 出版日期:2025-09-16 发布日期:2025-09-16
  • 通讯作者: 顾海燕 E-mail:zhangjx@casm.ac.cn;guhy@casm.ac.cn
  • 作者简介:张继贤(1965—),男,博士,研究员,研究方向为摄影测量与遥感、地理信息系统、资源与环境遥感监测。E-mail:zhangjx@casm.ac.cn
  • 基金资助:
    2025年度浙江省尖兵科技计划项目(2025C01073)

Deep learning methods for remote sensing intelligent change detection: evolution and development

Jixian ZHANG1(), Haiyan GU2(), Huan NI3, Haitao LI2, Yi YANG2, Shaopeng DING4, Songman SUI4   

  1. 1.Moganshan Geospatial Information Laboratory, Huzhou 313299, China
    2.Chinese Academy of Surveying and Mapping, Beijing 100830, China
    3.Nanjing University of Information Science and Technology, Nanjing 210044, China
    4.Shandong University of Science and Technology, Qingdao 266590, China
  • Received:2024-10-10 Revised:2025-07-26 Online:2025-09-16 Published:2025-09-16
  • Contact: Haiyan GU E-mail:zhangjx@casm.ac.cn;guhy@casm.ac.cn
  • About author:ZHANG Jixian (1965—), male, PhD, researcher, majors in photogrammetry and remote sensing, geographic information system, resources and environment remote sensing monitoring. E-mail: zhangjx@casm.ac.cn
  • Supported by:
    2025 Zhejiang Vanguard S&T Program Project(2025C01073)

摘要:

多模态遥感对地观测和深度学习技术的快速发展,拓展了遥感变化检测的数据维度和方法维度,为更加自动化、精细化和智能化的变化检测奠定了基础。本文聚焦深度学习的变化检测,面向变化特征表达和网络学习策略两个基本科学问题,详细梳理了变化检测研究的演变过程。变化特征表达层面,呈现4个方面的研究趋势,即局部、全局到时空联合特征表达,单一模态到多模态特征表达,轻量级模型到大模型特征表达,以及二值到多类别语义特征表达;网络学习层面,呈现全监督、弱/半监督到无监督变化检测的发展趋势。在此基础上,探讨了当前基于深度学习的变化检测所面临的挑战,并结合当前人工智能技术的发展趋势,指出了图文融合、生成式、人机协同模式3个发展方向,以期为理论方法及应用研究提供方向及思路,助力提升遥感变化检测的智能化能力与应用水平。

关键词: 变化检测, 深度学习, 多模态, 语义变化, 人机协同

Abstract:

The rapid development of multimodal remote sensing and deep learning technologies has expanded the data and method dimensions of remote sensing change detection, laying the foundation for more automated, refined, and intelligent change detection. This article focuses on change detection based on deep learning, addressing two fundamental scientific issues: change feature expression and network learning strategies, and detailing the evolution of change detection research. In terms of change feature expression, there are four research trends: from local to global and spatiotemporal integration, from single modality to multimodality, from lightweight models to large models, and from binary to multi-category semantic feature expression. In terms of network learning, there is a development trend from fully supervised to weak/semi-supervised to unsupervised change detection. Based on this, the article discusses the current challenges faced by deep learning-based change detection and, in conjunction with the development trends of artificial intelligence technology, points out three development directions: text-image fusion, generative, and human-computer collaborative modes. This aims to provide direction and ideas for theoretical methods and application research, and to enhance the intelligence and application level of remote sensing change detection.

Key words: change detection, deep learning, multi-modal, semantic change, human-computer collaboration

中图分类号: