测绘学报 ›› 2025, Vol. 54 ›› Issue (2): 334-344.doi: 10.11947/j.AGCS.2025.20230329
• 地图学与地理信息 • 上一篇
涂伟1,2,3(), 池向沅1,2,3, 赵天鸿1,4(
), 杨剑5, 朱世平6, 陈德莉6
收稿日期:
2023-08-10
发布日期:
2025-03-11
通讯作者:
赵天鸿
E-mail:tuwei@szu.edu.cn;zhaotianhong@sztu.edu.cn
作者简介:
涂伟(1984—),男,博士,教授,研究方向为城市时空大数据分析方法及应用。 E-mail:tuwei@szu.edu.cn
基金资助:
Wei TU1,2,3(), Xiangyuan CHI1,2,3, Tianhong ZHAO1,4(
), Jian YANG5, Shiping ZHU6, Deli CHEN6
Received:
2023-08-10
Published:
2025-03-11
Contact:
Tianhong ZHAO
E-mail:tuwei@szu.edu.cn;zhaotianhong@sztu.edu.cn
About author:
TU Wei (1984—), male, PhD, professor, majors in urban spatio-temporal big data analysis methods and applications. E-mail: tuwei@szu.edu.cn
Supported by:
摘要:
城市排水管网的流量是其运行效率和安全的关键指标,准确的流量预测对排水管网运行风险预警、优化其运行效率及规划布局至关重要。水流量不仅受到其自身动力学特性的影响,还与管网的空间结构紧密相关,但传统水流量预测方法较少关注水流在管道之间复杂多维的空间依赖关系。针对这一问题,本文提出了一种基于多视图的时空图网络模型,该模型综合考虑了排水管网的空间邻近性和节点间的属性相似性。分别构建最近邻拓扑视图与流量相似性属性视图,使用时空图卷积网络挖掘流量特征的内在时空依赖,利用注意力机制对多个视图的时空依赖特征进行融合以获得流量预测值。利用某市排水管网历史水流监测数据进行试验,结果表明本文提出的多视图时空图神经网络模型取得了较好的预测性能,多视图对比试验验证了不同视图在模型中起到的贡献。
中图分类号:
涂伟, 池向沅, 赵天鸿, 杨剑, 朱世平, 陈德莉. 城市排水管网流量预测多视图时空图神经网络模型[J]. 测绘学报, 2025, 54(2): 334-344.
Wei TU, Xiangyuan CHI, Tianhong ZHAO, Jian YANG, Shiping ZHU, Deli CHEN. Multi-view spatio-temporal graph convolutional networks model for urban drainage networks flow prediction[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 334-344.
表2
各模型预测精度结果对比"
模型 | MAPE | RMSE/(m3/s) | ||||||
---|---|---|---|---|---|---|---|---|
15 min | 30 min | 45 min | 60 min | 15 min | 30 min | 45 min | 60 min | |
ARIMA | 0.176 | 0.238 | 0.258 | 0.276 | 0.107 | 0.141 | 0.153 | 0.165 |
RFR | 0.146 | 0.161 | 0.175 | 0.190 | 0.090 | 0.095 | 0.101 | 0.110 |
LSTM | 0.155 | 0.152 | 0.155 | 0.149 | 0.106 | 0.108 | 0.109 | 0.112 |
AutoEncoder | 0.142 | 0.138 | 0.146 | 0.152 | 0.105 | 0.104 | 0.103 | 0.106 |
GWNet | 0.099 | 0.118 | 0.128 | 0.139 | 0.075 | 0.080 | 0.084 | 0.089 |
AGCRN | 0.095 | 0.104 | 0.118 | 0.118 | 0.081 | 0.085 | 0.087 | 0.090 |
MVSTGCN | 0.097 | 0.102 | 0.106 | 0.111 | 0.075 | 0.078 | 0.080 | 0.083 |
[1] | HUANG Dong, LIU Xiuhong, JIANG Songzhu, et al. Current state and future perspectives of sewer networks in urban China[J]. Frontiers of Environmental Science & Engineering, 2018, 12(3): 2. |
[2] |
李清泉, 张德津, 汪驰升, 等. 动态精密工程测量技术及应用[J]. 测绘学报, 2021, 50(9): 1147-1158. DOI:.
doi: 10.11947/j.AGCS.2021.20210172 |
LI Qingquan, ZHANG Dejin, WANG Chisheng, et al. Technology and applications of dynamic and precise engineering surveying[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1147-1158. DOI:.
doi: 10.11947/j.AGCS.2021.20210172 |
|
[3] | KHODASHENAS S R, TAJBAKHSH M. Management of urban drainage system using integrated MIKE SWMM and GIS[J]. Journal of Water Resource and Hydraulic Engineering, 2016, 5(1): 36-45. |
[4] | VAN DER VOORT M, DOUGHERTY M, WATSON S. Combining Kohonen maps with ARIMA time series models to forecast traffic flow[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(5): 307-318. |
[5] | WANG Hao, SONG Lixiang. Water level prediction of rainwater pipe network using an SVM-based machine learning method[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34(2): 2051002. |
[6] | KARIMI H S, NATARAJAN B, RAMSEY C L, et al. Comparison of learning-based wastewater flow prediction methodologies for smart sewer management[J]. Journal of Hydrology, 2019, 577: 123977. |
[7] | ZHANG Duo, LINDHOLM G, RATNAWEERA H. Use long short-term memory to enhance Internet of Things for combined sewer overflow monitoring[J]. Journal of Hydrology, 2018, 556: 409-418. |
[8] | 夏巍, 汪石, 梁祥莹. 基于改进GRU的城市供水管网流量预测研究[J]. 安徽建筑大学学报, 2023, 31(2): 51-54. |
XIA Wei, WANG Shi, LIANG Xiangying. Research on flow forecasting methods for urban water supply network based on improved GRU[J]. Journal of Anhui Jianzhu University, 2023, 31(2): 51-54. | |
[9] | 李双宇, 张明凯, 刘艳臣, 等. 基于LSTM模型的排水系统流量预测研究[J]. 中国给水排水, 2022, 38(5): 59-64. |
LI Shuangyu, ZHANG Mingkai, LIU Yanchen, et al. Flow prediction of drainage system based on long short time memory model[J]. China Water & Wastewater, 2022, 38(5): 59-64. | |
[10] | NGUYEN L V, TORNYEVIADZI H M, BUI D T, et al. Predicting discharges in sewer pipes using an integrated long short-term memory and entropy A-TOPSIS modeling framework[J]. Water, 2022, 14(3): 300. |
[11] | SHENG Zheng, CAI Zhikai. GAT-GRU based model for water network flow prediction[C]//Proceedings of the 9th International Conference on Water Resource and Environment. Singapore: Springer, 2024: 151-162. |
[12] | REN Yibin, CHEN Huanfa, HAN Yong, et al. A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes[J]. International Journal of Geographical Information Science, 2020, 34(4): 802-823. |
[13] |
于洋洋, 贺康杰, 武芳, 等. 面状居民地形状分类的图卷积神经网络方法[J]. 测绘学报, 2022, 51(11): 2390-2402. DOI:.
doi: 10.11947/j.AGCS.2022.20210134 |
YU Yangyang, HE Kangjie, WU Fang, et al. Graph convolution neural network method for shape classification of areal settlements[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11): 2390-2402. DOI:.
doi: 10.11947/j.AGCS.2022.20210134 |
|
[14] |
李静, 刘海砚, 郭文月, 等. 基于深度学习的人群活动流量时空预测模型[J]. 测绘学报, 2021, 50(4): 522-531. DOI:.
doi: 10.11947/j.AGCS.2021.20200230 |
LI Jing, LIU Haiyan, GUO Wenyue, et al. A spatio-temporal network for human activity prediction based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 522-531. DOI:.
doi: 10.11947/j.AGCS.2021.20200230 |
|
[15] | 井佩光, 田雨豆, 汪少初, 等. 基于动态扩散图卷积的交通流量预测算法[J]. 吉林大学学报(工学版), 2024, 54(6): 1582-1592. |
JING Peiguang, TIAN Yudou, WANG Shaochu, et al. Traffic flow prediction algorithm based on dynamic diffusion graph convolution[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(6): 1582-1592. | |
[16] | LIAO Ziyi, LIU Minghui, DU Bowen, et al. A temporal and spatial prediction method for urban pipeline network based on deep learning[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 608: 128299. |
[17] | YU Bing, YIN Haoteng, ZHU Zhanxing. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[EB/OL]. [2023-05-04]. https://arxiv.org/abs/1709.04875v4. |
[18] | WU Shaofei. Spatiotemporal dynamic forecasting and analysis of regional traffic flow in urban road networks using deep learning convolutional neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1607-1615. |
[19] | LIU Zhichen, LIU Zhiyuan, FU Xiao. Dynamic origin-destination flow prediction using spatial-temporal graph convolution network with mobile phone data[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(5): 147-161. |
[20] | RAWAT W, WANG Zenghui. Deep convolutional neural networks for image classification: a comprehensive review[J]. Neural Computation, 2017, 29(9): 2352-2449. |
[21] | DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney: JMLR, 2017: 933-941. |
[22] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2023-05-04]. https://arxiv.org/abs/1609.02907v4. |
[23] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1-11. |
[24] | GUO Shengnan, LIN Youfang, FENG Ning, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of 2019 AAAI Conference on Artificial Intelligence. Honolulu: AAAI Press, 2019: 922-929. |
[25] | NGUYEN N, QUANZ B. Temporal latent auto-encoder: a method for probabilistic multivariate time series forecasting[EB/OL]. [2023-05-04]. https://ojs.aaai.org/index.php/AAAI/article/download/17101/16908. |
[26] | WU Zonghan, PAN Shirui, LONG Guodong, et al. Graph wavenet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao: ACM Press, 2019: 1907-1913. |
[27] | BAI Lei, YAO Lina, LI Can, et al. Adaptive graph convolutional recurrent network for traffic forecasting[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: ACM Press, 2020: 17804-17815. |
[28] | WUNSCH A, LIESCH T, BRODA S. Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX)[J]. Journal of Hydrology, 2018, 567: 743-758. |
[1] | 唐建波, 胡致远, 彭举, 夏何炎, 丁俊杰, 张玉玉, 梅小明. 融合视觉特征与运动特征的众源轨迹数据道路交叉口识别方法[J]. 测绘学报, 2025, 54(1): 182-193. |
[2] | 李志林, 徐柱, 慎利, 李精忠, 蓝天, 王继成, 赵婷婷, 艾廷华, 遆鹏, 刘万增, 陈军. 自主式情境化地图表达:大模型时代的智能化地图制图理论探讨[J]. 测绘学报, 2024, 53(11): 2043-2052. |
[3] | 吴华意, 赵安琪, 梁健源, 侯树洋. 面向地学分析AI建模的地理信息服务层次网络模型[J]. 测绘学报, 2024, 53(11): 2053-2063. |
[4] | 余华飞, 邱天奇, 周哲, 龚冲亚, 肖天元, 杨敏, 艾廷华. 图Transformer支持下的河网模式识别[J]. 测绘学报, 2024, 53(11): 2075-2085. |
[5] | 陈玮彤, 许鑫, 朱长青, 任娜. 基于后门水印和感兴趣区加密的遥感目标检测数据集版权保护算法[J]. 测绘学报, 2024, 53(11): 2086-2098. |
[6] | 李朋朋. 多语义特征协同的多源POI匹配融合方法[J]. 测绘学报, 2024, 53(11): 2229-2229. |
[7] | 郭仁忠, 陈业滨, 赵志刚, 马丁, 贺彪, 王伟玺, 洪武扬, 李敏敏. GIS的科学概念转化:从Map-based GIS到Space-oriented GIS[J]. 测绘学报, 2024, 53(10): 1853-1862. |
[8] | 李佳, 李静, 刘海砚, 陆川伟, 陈晓慧, 刘俊楠, 石文. 地理知识图谱增强与多时空条件约束的轨迹预测[J]. 测绘学报, 2024, 53(10): 2021-2033. |
[9] | 王月峰. 三维建筑模型墙面语义参数化表达与重建方法研究[J]. 测绘学报, 2024, 53(10): 2036-2036. |
[10] | 王培晓. 时空视图学习支持的城市交通数据缺失补全与短期预测[J]. 测绘学报, 2024, 53(10): 2037-2037. |
[11] | 刘万增, 陈杭, 任加新, 张兆江, 李然, 赵婷婷, 翟曦, 朱秀丽. 基于混合智能的街景影像知识提取方法[J]. 测绘学报, 2024, 53(9): 1817-1828. |
[12] | 张付兵, 孙群, 马京振, 孙士杰, 温伯威. 融合全局和局部特征的建筑物形状智能分类方法[J]. 测绘学报, 2024, 53(9): 1842-1852. |
[13] | 邬伦, 侯远樵, 刘瑜. 大数据的6种地理学应用范式[J]. 测绘学报, 2024, 53(8): 1465-1479. |
[14] | 石岩, 王达, 邓敏, 杨学习. 时空异常探测:从数据驱动到知识驱动的内涵转变与实现路径[J]. 测绘学报, 2024, 53(8): 1493-1504. |
[15] | 刘鹏程, 马宏然, 周洋, 邵子芹. 一种曲线数据压缩的自编码器神经网络方法[J]. 测绘学报, 2024, 53(8): 1634-1643. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 86
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 96
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||