测绘学报 ›› 2024, Vol. 53 ›› Issue (9): 1842-1852.doi: 10.11947/j.AGCS.2024.20240040

• 地图学与地理信息 • 上一篇    

融合全局和局部特征的建筑物形状智能分类方法

张付兵1(), 孙群1(), 马京振1,2,3, 孙士杰1, 温伯威1,4,5   

  1. 1.信息工程大学地理空间信息学院,河南 郑州 450052
    2.61540部队,陕西 西安 710054
    3.智慧地球重点实验室,北京 100029
    4.智慧中原地理信息技术河南省协同创新中心,河南 郑州 450052
    5.时空感知与智能处理自然资源部重点实验室,河南 郑州 450052
  • 收稿日期:2024-01-22 发布日期:2024-10-16
  • 通讯作者: 孙群 E-mail:zhangfbing@163.com;13503712102@163.com
  • 作者简介:张付兵(1997—),男,博士生,主要从事数字地图制图与制图综合研究。E-mail:zhangfbing@163.com
  • 基金资助:
    国家自然科学基金(42101454);智慧地球重点实验室基金(KF2023YB02-02)

An intelligent classification method for building shape based on fusion of global and local features

Fubing ZHANG1(), Qun SUN1(), Jingzhen MA1,2,3, Shijie SUN1, Bowei WEN1,4,5   

  1. 1.Institute of Geospatial Information, University of Information Engineering, Zhengzhou 450052, China
    2.Troops 61540, Xi'an 710054, China
    3.Key Laboratory of Smart Earth, Beijing 100029, China
    4.Collaborative Innovation Center of Geo-information Technology for Smart Central Plains, Zhengzhou 450052, China
    5.Key Laboratory of Spatiotemporal Perception and Intelligent processing, Ministry of Natural Resources, Zhengzhou 450052, China
  • Received:2024-01-22 Published:2024-10-16
  • Contact: Qun SUN E-mail:zhangfbing@163.com;13503712102@163.com
  • About author:ZHANG Fubing (1997—), male, PhD candidate, majors in digital cartography and cartographic generalization. E-mail: zhangfbing@163.com
  • Supported by:
    The National Natural Science Foundation of China(42101454);Key Laboratory of Smart Earth of China(KF2023YB02-02)

摘要:

深度学习方法支持下的建筑物形状认知成为地图制图等领域研究的热点,利用深度学习的特征挖掘能力,可以提取形状的嵌入表示,支撑制图综合、空间查询等应用场景。本文以建筑物数据为例,构建了一种融合全局特征和图节点特征的建筑物形状分类的图谱卷积神经网络模型。首先,在建筑物加权图基础上分别以建筑物4个宏观形状特征、边界顶点的多阶局部和区域结构特征生成形状的融合描述;然后,利用图谱卷积神经网络提取多层次形状信息,通过融合不同层的图表示结果生成特征编码用于形状分类。试验结果表明,相较对比方法,本文方法能够更有效地区分不同建筑物的形状类别,且生成的特征编码具有良好的形状区分度。

关键词: 形状认知, 图卷积神经网络, 建筑物形状分类, 特征融合, 图分类

Abstract:

Supported by deep learning methods for building shape cognition, it has become a hot research topic in fields such as cartography. The feature mining ability of deep learning can help extract embedded representations of shapes, supporting application scenarios such as cartographic generalization and spatial retrieval. A graph convolutional neural network model for building shape classification that integrates global features and graph node features is constructed, and validated using building data as an example. Firstly, a weighted building graph is constructed, and then a fusion description of the shape is generated based on the 4 macroscopic shape features of building and the multi-level local and regional structural features of boundary vertice. Graph convolutional neural networks are used to extract multi-level shape information, and the feature coding generated by fusing graph representations from different layers is used for shape classification.The experimental results show that compared to the comparative method, the proposed method is more effective in distinguishing the shape categories of different buildings, and the generated feature coding have positive shape discrimination.

Key words: shape cognition, graph convolutional neural network, building shape classification, feature fusion, graph classification

中图分类号: