测绘学报 ›› 2024, Vol. 53 ›› Issue (8): 1624-1633.doi: 10.11947/j.AGCS.2024.20230198

• 摄影测量与遥感 • 上一篇    下一篇

融合图卷积与多尺度特征的接触网点云语义分割

徐涛1(), 杨元维1(), 高贤君1,2, 王志威3, 潘越3, 李少华1, 许磊4, 王艳军5,6, 刘波2, 余静7, 吴凤敏7, 孙浩宇1   

  1. 1.长江大学地球科学学院,湖北 武汉 430100
    2.东华理工大学自然资源部环鄱阳湖区域矿山环境监测与治理重点实验室,江西 南昌 330013
    3.内蒙古自治区测绘地理信息中心,内蒙古 呼和浩特 010050
    4.中国铁路设计集团有限公司,天津 300308
    5.湖南科技大学地理空间信息技术国家地方联合工程实验室,湖南 湘潭 411201
    6.湖南科技大学测绘遥感信息工程湖南省重点实验室,湖南 湘潭 411201
    7.重庆市地理信息和遥感应用中心,重庆 401147
  • 收稿日期:2023-06-08 发布日期:2024-09-25
  • 通讯作者: 杨元维 E-mail:2021720578@yangtze.edu.cn;2021720578@yangtze.edu.cn;yyw_08@yangtzeu.edu.cn
  • 作者简介:徐涛(1998—),男,硕士生,研究方向为三维点云数据语义分割。E-mail:2021720578@yangtze.edu.cn
  • 基金资助:
    城市轨道交通数字化建设与测评技术国家工程实验室开放课题基金(2023ZH01);天津市科技计划(23YFYSHZ00190);重庆市自然科学基金(CSTB2022NSCQ-MSX1484);自然资源部环鄱阳湖区域矿山环境监测与治理重点实验室开放基金(MEMI-2021-2022-08);湖南科技大学测绘遥感信息工程湖南省重点实验室开放基金(E22205);湖南省自然科学基金项目部门联合基金(2024JJ8327);江西省自然科学基金(20232ACB204032);长江大学大学生创新项目(Yz2023013)

Integrated graph convolution and multi-scale features for the overhead catenary system point cloud semantic segmentation

Tao XU1(), Yuanwei YANG1(), Xianjun GAO1,2, Zhiwei WANG3, Yue PAN3, Shaohua LI1, Lei XU4, Yanjun WANG5,6, Bo LIU2, Jing YU7, Fengmin WU7, Haoyu SUN1   

  1. 1.School of Geosciences, Yangtze University, Wuhan 430100, China
    2.Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake of Ministry of Natural Resources, East China University of Technology, Nanchang 330013, China
    3.Region Surveying and Mapping Geographic Information Center, Hohhot 010050, China
    4.China Railway Design Corporation, Tianjin 300308, China
    5.National-local Joint Engineering Laboratory of Geo-spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China
    6.Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying, and Remote Sensing, Hunan University of Science and Technology, Xiangtan 411201, China
    7.Chongqing Geomatics and Remote Sensing Center, Chongqing 401147, China
  • Received:2023-06-08 Published:2024-09-25
  • Contact: Yuanwei YANG E-mail:2021720578@yangtze.edu.cn;2021720578@yangtze.edu.cn;yyw_08@yangtzeu.edu.cn
  • About author:XU Tao (1998—), male, postgraduate, majors in the semantic segmentation of 3D point cloud data. E-mail: 2021720578@yangtze.edu.cn
  • Supported by:
    The Open Fund of National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit(2023ZH01);Tianjin Science and Technology Plan Project(23YFYSHZ00190);The Natural Science Foundation of Chongqing Province(CSTB2022NSCQ-MSX1484);Open Fund of Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake, Ministry of Natural Resources(MEMI-2021-2022-08);The Open Fund of Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying, Mapping and Remote Sensing, Hunan University of Science and Technology(E22205);Hunan Provincial Natural Science Foundation Project Department Union Fund(2024JJ8327);Jiangxi Provincial Natural Science Foundation(20232ACB204032);Yangtze University College Student Innovation Project(Yz2023013)

摘要:

准确的接触网语义分割结果对于接触网组件提取和几何参数检测具有重要的意义。实际上,接触网场景复杂,部件之间的尺寸差异较大,并且存在着较多语义信息接近且相连的部件,导致现有的深度学习方法难以高精度地完成接触网点云语义分割任务。基于上述问题,本文提出一种基于图卷积和多尺度特征的神经网络GDM-Net。该网络包含基于图的局部特征提取器,增强了对接触网点云局部特征提取;双重通道注意力模块,同时兼顾了接触网点云的全局和显著特征的提取;多尺度特征融合的细化模块,通过提取并融合接触网的多尺度信息,提升了分割精度。受益于上述几个模块,该网络提升了对于接触网部件交界处的点云分割能力。基于接触网数据集对该方法进行定性和定量的验证分析,GDM-Net相较于5种其他的点云深度学习方法,精度最高,OA、mIoU和F1值这3个精度指标分别可以达到96.73%,91.06%和95.28%。定性比较表示,本文提出的网络可以有效减少部件连接部分的错分问题,提高接触网部件分割的完整性。

关键词: 激光雷达, 接触网系统, 图卷积, 注意力机制, 多尺度特征融合, 点云语义分割

Abstract:

Accurately segmenting the catenary is essential for extracting its components and detecting geometric parameters. In fact, the catenary scene is complex, with significant differences in size between internal components. There are many components with similar and connected semantic information, which makes it difficult for existing deep learning methods to accurately complete catenary point cloud semantic segmentation tasks. To address this issue, this paper proposes a neural network named GDM-Net that leverages graph convolution and multi-level features. GDM-Net includes a graph-based local feature extractor that enhances local feature extraction of the catenary point cloud, a double efficient channel attention module that considers the extraction of global and salient features of the catenary point cloud, and a refinement module of multi-scale feature fusion that improves segmentation accuracy by extracting and fusing multi-scale information of the catenary. The proposed network significantly improves the point cloud segmentation ability of catenary components, particularly at the intersection. Based on qualitative and quantitative analysis of the overhead catenary system dataset, the method is verified to achieve the highest accuracy among five other point cloud deep learning methods. The OA, mIoU, and F1 accuracy indices reach 96.73%, 91.06%, and 95.28%, respectively. Qualitative comparisons demonstrate that the proposed network effectively reduces the misclassification problem of component links and improves the integrity of catenary component segmentation.

Key words: LiDAR, overhead catenary system, graph convolution, attention mechanism, multi-scale feature fusion, point cloud semantic segmentation

中图分类号: