[1] |
LIN Shuai, XU Cheng, CHEN Lipei, et al. LiDAR point cloud recognition of overhead catenary system with deep learning[J]. Sensors, 2020, 20(8): 2212-2228.
|
[2] |
TU Xiaohan, XU Cheng, LIU Siping, et al. LiDAR point cloud recognition and visualization with deep learning for overhead contact inspection[J]. Sensors, 2020, 20(21): 6387-6404.
|
[3] |
杨元维, 张跃, 高贤君, 等. 顾及空间关系的3D LiDAR铁路支持装置自动提取[J]. 浙江大学学报(工学版), 2022, 56(10): 2066-2076.
|
|
YANG Yuanwei, ZHANG Yue, GAO Xianjun, et al. Automatic extraction of spatially relevant 3D LiDAR railway support facility[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(10): 2066-2076.
|
[4] |
杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10): 1509-1516. DOI: 10.11947/j.AGCS.2017.20170351.
|
|
YANG Bisheng, LIANG Fuxun, HUANG Ronggang. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1509-1516. DOI: 10.11947/j.AGCS.2017.20170351.
|
[5] |
周靖松, 韩志伟, 杨长江. 基于三维点云的接触网几何参数检测方法[J]. 仪器仪表学报, 2018, 39(4): 239-246.
|
|
ZHOU Jingsong, HAN Zhiwei, YANG Changjiang. Catenary geometric parameters detection method based on 3D point cloud[J]. Chinese Journal of Scientific Instrument, 2018, 39(4): 239-246.
|
[6] |
张东, 余朝刚. 基于激光扫描的接触网几何参数检测方法研究[J]. 计算机测量与控制, 2016, 24(1): 57-60.
|
|
ZHANG Dong, YU Chaogang. Catenary geometry parameter detection method based on laser scanning[J]. Computer Measurement & Control, 2016, 24(1): 57-60.
|
[7] |
罗隆福, 叶威, 王健. 基于深度学习的高铁接触网顶紧螺栓的缺陷检测[J]. 铁道科学与工程学报, 2021, 18(3): 605-614.
|
|
LUO Longfu, YE Wei, WANG Jian. Defect detection of the puller bolt in high-speed railway catenary based on deep learning[J]. Journal of Railway Science and Engineering, 2021, 18(3): 605-614.
|
[8] |
XIE Yuxing, TIAN Jiaojiao, ZHU Xiaoxiang. Linking points with labels in 3D: a review of point cloud semantic segmentation[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(4): 38-59.
|
[9] |
DERPANIS K G. Overview of the RANSAC algorithm[J]. Image Rochester NY, 2010, 4(1): 2-3.
|
[10] |
SCHUBERT E, SANDER J, ESTER M, et al. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN[J]. ACM Transactions on Database Systems, 2017, 42(3): 1-21.
|
[11] |
AHMAD A, DEY L. A k-mean clustering algorithm for mixed numeric and categorical data[J]. Data & Knowledge Engineering, 2007, 63(2): 503-527.
|
[12] |
ZHANG Jixian, LIN Xiangguo, NING Xiaogang. SVM-based classification of segmented airborne LiDAR point clouds in urban areas[J]. Remote Sensing, 2013, 5(8): 3749-3775.
|
[13] |
孙杰, 赖祖龙. 利用随机森林的城区机载LiDAR数据特征选择与分类[J]. 武汉大学学报(信息科学版), 2014, 39(11): 1310-1313.
|
|
SUN Jie, LAI Zulong. Airborne LiDAR feature selection for urban classification using random forests[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1310-1313.
|
[14] |
LALONDE J F, UNNIKRISHNAN R, VANDAPEL N, et al. Scale selection for classification of point-sampled 3D surfaces[C]//Proceedings of 2005 International Conference on 3D Digital Imaging and Modeling. Ottawa: IEEE, 2005: 285-292.
|
[15] |
张广斌, 高贤君, 冉树浩, 等. 高分遥感影像云雪共存区轻量云高精度检测方法[J]. 测绘学报, 2023, 52(1): 93-107. DOI: 10.11947/j.AGCS.2023.20210686.
|
|
ZHANG Guangbin, GAO Xianjun, RAN Shuhao, et al. Accurate and lightweight cloud detection method based on cloud and snow coexistence region of high-resolution remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 93-107. DOI: 10.11947/j.AGCS.2023.20210686.
|
[16] |
张佳颖, 赵晓丽, 陈正. 基于深度学习的点云语义分割综述[J]. 激光与光电子学进展, 2020, 57(4): 28-46.
|
|
ZHANG Jiaying, ZHAO Xiaoli, CHEN Zheng. Review of semantic segmentation of point cloud based on deep learning[J]. Laser & Optoelectronics Progress, 2020, 57(4): 28-46.
|
[17] |
YANG Zhixin, TANG Lulu, ZHANG Kun, et al. Multi-view CNN feature aggregation with ELM auto-encoder for 3D shape recognition[J]. Cognitive Computation, 2018, 10(6): 908-921.
|
[18] |
RIEGLER G, ULUSOY A O, GEIGER A. OctNet: learning deep 3D representations at high resolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6620-6629.
|
[19] |
CHARLES R Q, SU H, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 77-85.
|
[20] |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30: 5099-5108.
|
[21] |
WANG Yue, SUN Yongbin, LIU Ziwei, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12.
|
[22] |
GRAHAM B, ENGELCKE M, VAN DER MAATEN L. 3D semantic segmentation with submanifold sparse convolutional networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 9224-9232.
|
[23] |
WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
|
[24] |
JIANG Tengping, YANG Bisheng, WANG Yongjun, et al. RailSeg: learning local-global feature aggregation with contextual information for railway point cloud semantic segmentation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-29.
|
[25] |
RUBINSTEIN R Y, KROESE D P. A tutorial introduction to the cross-entropy method[M]//Information science and statistics. New York: Springer, 2004: 29-58.
|
[26] |
CHEN Zhanlong, LI Shuangjiang, XU Yongyang, et al. Correg-Yolov3: a method for dense buildings detection in high-resolution remote sensing images[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(2): 51-61.
|
[27] |
QIAN Guocheng, LI Yuchen, PENG Houwen, et al. Pointnext: revisiting Pointnet++ with improved training and scaling strategies[J]. Advances in Neural Information Processing Systems, 2022, 35: 23192-23204.
|