
测绘学报 ›› 2024, Vol. 53 ›› Issue (6): 1236-1250.doi: 10.11947/j.AGCS.2024.20230438
• 智能化测绘 • 上一篇
纪长琦1(
), 郭肇捷1, 孙海丽1,2(
), 钟若飞1,2
收稿日期:2023-10-07
发布日期:2024-07-22
通讯作者:
孙海丽
E-mail:jichangqi123@163.com;sunhaili@cnu.edu.cn
作者简介:纪长琦(1996—),男,硕士,研究方向为隧道结构变形及表观病害检测。 E-mail:jichangqi123@163.com
基金资助:
Changqi JI1(
), Zhaojie GUO1, Haili SUN1,2(
), Ruofei ZHONG1,2
Received:2023-10-07
Published:2024-07-22
Contact:
Haili SUN
E-mail:jichangqi123@163.com;sunhaili@cnu.edu.cn
About author:JI Changqi (1996—), male, master, majors in tunnel structure deformation and apparent disease detection. E-mail: jichangqi123@163.com
Supported by:摘要:
渗漏水是地铁隧道最主要的病害之一,也会导致其他结构病害,开展地铁隧道渗漏水病害检测方法研究具有重要意义。本文聚焦于地铁隧道渗漏水问题,提出了一种基于移动激光扫描点云数据的渗漏水定位及检测方法。首先,结合移动激光扫描检测方法,开展了隧道精确定位方法研究。然后,对YOLOv7模型进行了改进,引入了Conv NeXt网络和CBAM模块以使模型更好地捕获多尺度、多抽象级别的特征,增强对渗漏水关键特征的关注;使用GIoU Loss损失函数,使模型能够更好地处理不完整渗漏水框;预测时使用Soft-NMS加权平均的方法,保留更多的边界框,从而提高检测精度。结合在重庆地铁获取的激光扫描数据构建的盾构法和矿山法隧道渗漏水数据集,验证了本文方法的高效性和稳健性。消融试验表明,本文方法相较于基线模型在不同数据集上均取得了显著的性能提升,在盾构法数据集中,准确率P提升了8.1%,召回率R提升了4%;在矿山法数据集中,准确率P提升了8.6%,召回率R提升了6.8%。同时,与主流目标检测算法,如Faster RCNN(Swin)、Faster RCNN(Conv NeXt)、YOLOv8对比,本文方法在精度和速度方面都表现出优势。最后,本文展示了部分隧道渗漏水的定位与检测结果,以验证本文方法的实用性。
中图分类号:
纪长琦, 郭肇捷, 孙海丽, 钟若飞. 基于移动激光扫描的地铁隧道渗漏水定位及快速检测方法[J]. 测绘学报, 2024, 53(6): 1236-1250.
Changqi JI, Zhaojie GUO, Haili SUN, Ruofei ZHONG. Location and rapid detection method of water leakage in subway tunnels based on mobile laser scanning[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1236-1250.
表6
隧道不同方法结果对比"
| 数据集 | 方法 | 每秒检测图片数量 | TP | FP | FN | P | R | m AP0.5 | F1值 |
|---|---|---|---|---|---|---|---|---|---|
| 盾构法 | Faster(Swin) | 0.161 | 332 | 157 | 43 | 0.679 | 0.885 | 0.855 | 0.769 |
| Faster(ConvNeXt) | 0.169 | 342 | 139 | 33 | 0.711 | 0.912 | 0.869 | 0.799 | |
| YOLOv8 | 0.030 | 280 | 64 | 95 | 0.814 | 0.747 | 0.812 | 0.779 | |
| 本文方法 | 0.045 | 320 | 47 | 55 | 0.872 | 0.853 | 0.865 | 0.862 | |
| 矿山法 | Faster(Swin) | 0.168 | 328 | 149 | 70 | 0.688 | 0.824 | 0.865 | 0.75 |
| Faster(Conv NeXt) | 0.177 | 355 | 154 | 43 | 0.697 | 0.892 | 0.883 | 0.783 | |
| YOLOv8 | 0.031 | 291 | 50 | 107 | 0.853 | 0.731 | 0.824 | 0.788 | |
| 本文方法 | 0.049 | 329 | 41 | 69 | 0.889 | 0.827 | 0.871 | 0.857 |
| [1] | 韩宝明, 余怡然, 习喆, 等. 城市轨道交通2023年度统计和分析报告[R].北京: 中国城市轨道交通协会, 2024. |
| HAN Baoming, YU Yiran, XI Zhe, et al. Urban rail transit 2023 annual statistics and analysis report [R].Beijing: China Association of Metros, 2024. | |
| [2] | 邓普. 铁路车载探地雷达检测隧道渗漏水的研究[D]. 成都: 西南交通大学, 2015. |
| DENG Pu. Research on detection of railway tunnel seepage with train-mounted GPR[D]. Chengdu: Southwest Jiaotong University, 2015. | |
| [3] | 陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8):995-1005.DOI:10.11947/j.AGCS.2021.20210235. |
| CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying and mapping: fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):995-1005.DOI:10.11947/j.AGCS.2021.20210235. | |
| [4] | 郑晔, 郭仁忠, 马丁, 等. 面向地理路网的交通信号智能协同控制方法[J]. 测绘学报, 2021, 50(9):1203-1210. DOI:10.11947/j.AGCS.2021.20210191. |
| ZHENG Ye, GUO Renzhong, MA Ding, et al. Multi-agent cooperative control for traffic signal on geographic road network[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9):1203-1210. DOI:10.11947/j.AGCS.2021.20210191. | |
| [5] | 杨必胜, 韩旭, 董震. 适用于城市场景大规模点云语义标识的深度学习网络[J]. 测绘学报, 2021, 50(8):1059-1067.DOI:10.11947/j.AGCS.2021.20210093. |
| YANG Bisheng, HAN Xu, DONG Zhen. A deep learning network for semantic labeling of large-scale urban point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1059-1067.DOI:10.11947/j.AGCS.2021.20210093. | |
| [6] | 李俊良. 地铁盾构隧道渗漏水病害点云自动识别研究[D]. 北京: 北京交通大学, 2021. |
| LI Junliang. Automatic recognition of point cloud of water leakage in subway shield tunnel[D]. Beijing: Beijing Jiaotong University, 2021. | |
| [7] | DU Liming, ZHONG Ruofei, SUN Haili, et al. Dislocation detection of shield tunnel based on dense cross-sectional point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11):22227-22243. |
| [8] | 阮东旭, 姚连璧, 许正文, 等. 基于轨道移动激光扫描的圆形隧道正射影像纠正算法[J]. 工程勘察, 2021, 49(1):41-46. |
| RUAN Dongxu, YAO Lianbi, XU Zhengwen, et al. An orthoimage correction algorithm for circular tunnel based on track moving laser scanning[J]. Geotechnical Investigation & Surveying, 2021, 49(1):41-46. | |
| [9] | UKAI M, NAGAMINE N. A high-performance inspection system of tunnel wall deformation using continuous scan image[EB/OL]. [2023-10-02]. https://documents.pub/document/a-high-performance-inspection-system-of-tunnel-wall-high-performance-inspection.html?page=1. |
| [10] | 刘学增, 桑运龙, 苏云帆. 基于数字图像处理的隧道渗漏水病害检测技术[J]. 岩石力学与工程学报, 2012, 31(S2):3779-3786. |
| LIU Xuezeng, SANG Yunlong, SU Yunfan. Detection technology of tunnel leakage disaster based on digital image processing[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2):3779-3786. | |
| [11] | 杨国田, 王云龙, 宋森平. 基于PSO的最佳熵阈值红外图像隧道渗漏水提取[J]. 计算机仿真, 2022, 39(7):233-237. |
| YANG Guotian, WANG Yunlong, SONG Senping. Tunnel leakage water extraction from infrared image with optimal entropic thresholding based on particle swarm[J]. Computer Simulation, 2022, 39(7):233-237. | |
| [12] | 吴杭彬, 于鹏飞, 刘春, 等. 基于红外热成像的地铁隧道渗漏水提取[J]. 工程勘察, 2019, 47(2):44-49, 61. |
| WU Hangbin, YU Pengfei, LIU Chun, et al. Extraction of metro tunnel seepage based on infrared thermal imaging[J]. Geotechnical Investigation & Surveying, 2019, 47(2):44-49, 61. | |
| [13] | HUANG Hongwei, SUN Yan, XUE Yadong, et al. Inspection equipment study for subway tunnel defects by grey-scale image processing[J]. Advanced Engineering Informatics, 2017, 32:188-201. |
| [14] | OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66. |
| [15] | XU Teng, XU Lijun, LI Xiaolu, et al. Detection of water leakage in underground tunnels using corrected intensity data and 3D point cloud of terrestrial laser scanning[J]. IEEE Access, 2018, 6:32471-32480. |
| [16] | 吴昌睿, 黄宏伟. 地铁隧道渗漏水的激光扫描检测方法及应用[J]. 自然灾害学报, 2018, 27(4):59-66. |
| WU Changrui, HUANG Hongwei. Laser scanning inspection method and application for metro tunnel leakage[J]. Journal of Natural Disasters, 2018, 27(4):59-66. | |
| [17] | HUANG Hongwei, LI Qingtong, ZHANG Dongming. Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2018, 77:166-176. |
| [18] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440. |
| [19] | ZHAO Shuai, ZHANG Dongming, HUANG Hongwei. Deep learning-based image instance segmentation for moisture marks of shield tunnel lining[J]. Tunnelling and Underground Space Technology, 2020, 95:103156. |
| [20] | HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venic: IEEE, 2017: 2980-2988. |
| [21] | XUE Yadong, CAI Xinyuan, SHADABFAR M, et al. Deep learning-based automatic recognition of water leakage area in shield tunnel lining[J]. Tunnelling and Underground Space Technology, 2020, 104:103524. |
| [22] | CAI Zhaowei, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5):1483-1498. |
| [23] | LIU Shuang, SUN Haili, ZHANG Zhenxin, et al. A multiscale deep feature for the instance segmentation of water leakages in tunnel using MLS point cloud intensity images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-16. |
| [24] | MAN Ke, LIU Ruilin, LIU Xiaoli, et al. Water leakage and crack identification in tunnels based on transfer-learning and convolutional neural networks[J]. Water, 2022, 14(9):1462. |
| [25] | GENG Peng, JIA Mengye, REN Xiaoxia. Tunnel lining water leakage image Segmentation based on improved BlendMask[J]. Structural Health Monitoring, 2023, 22(2):865-878. |
| [26] | LI Mengjiao, WANG Hao, ZHANG Shumei, et al. Subway water leakage detection based on improved deeplabV3+[C]//Proceedings of 2022 International Conference on Computer Systems. Qingdao: IEEE, 2022. |
| [27] | HAN Lei, CHEN Jiangfan, LI Haobo, et al. Multispectral water leakage detection based on a one-stage anchor-free modality fusion network for metro tunnels[J]. Automation in Construction, 2022, 140:104345. |
| [28] | CHEN Qian, XIONG Chuanguo, LÜ Weishan, et al. Convolutional neural network with attention module for identification of tunnel seepage[J]. Transportation Research Record: Journal of the Transportation Research Board, 2022, 2676(11):112-123. |
| [29] | GENG Peng, TAN Ziye, LUO Jun, et al. ACPA-Net: atrous channel pyramid attention network for segmentation of leakage in rail tunnel linings[J]. Electronics, 2023, 12(2):255. |
| [30] | 周宝定, 谢沛瑶, 郭文浩, 等. 基于激光点云灰度图像的隧道渗水病害检测[J]. 测绘通报, 2023 (8):34-39. |
| ZHOU Baoding, XIE Peiyao, GUO Wenhao, et al. Detection of tunnel leakage based on gray scale image of laser point cloud[J]. Bulletin of Surveying and Mapping, 2023 (8):34-39. | |
| [31] | FENG Shijin, FENG Yong, ZHANG Xiaolei, et al. Deep learning with visual explanations for leakage defect segmentation of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2023, 136:105107. |
| [32] | GUO Zhaojie, WEI Jifan, SUN Haili, et al. Enhanced water leakage detection in shield tunnels based on laser scanning intensity images using RDES-Net[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17:5680-5690. |
| [33] | WANG Chenyao, BOCHKOVSKIY A, LIAO Hongyuan. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2023-10-02]. https://arxiv.org/pdf/2207.02696. |
| [34] | JI Changqi, SUN Haili, ZHONG Ruofei, et al. Precise positioning method of moving laser point cloud in shield tunnel based on bolt hole extraction[J]. Remote Sensing, 2022, 14(19):4791. |
| [35] | ZHANG Wuming, QI Jianbo, WAN Peng, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6):501. |
| [36] | 高智梅, 王竞雪, 沈昭宇. 机载LiDAR建筑物点云渐进提取算法[J]. 测绘通报, 2021 (8):7-13. |
| GAO Zhimei, WANG Jingxue, SHEN Zhaoyu. Aerial LiDAR building point-cloud progressive extraction algorithm[J]. Bulletin of Surveying and Mapping, 2021 (8):7-13. | |
| [37] | JI Changqi, SUN Haili, ZHONG Ruofei, et al. Deformation detection of mining tunnel based on automatic target recognition[J]. Remote Sensing, 2023, 15(2):307. |
| [38] | LIU Zhuang, MAO Hanzi, WU Chaoyuan, et al. A ConvNet for the 2020s[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11966-11976. |
| [39] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of 2018 European Conference on Computer Vision. Munich: IEEE, 2018: 3-19. |
| [40] | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 658-666. |
| [41] | ZHENG Zhaohui, WANG Ping, LIU Wei, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):12993-13000. |
| [42] | BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS: improving object detection with one line of code[C]//Proceedings of 2017 IEEE International Conference on Computer Visionand Pattern Recognition. Venice: IEEE, 2017: 5562-5570. |
| [43] | SUN Haili, XU Zhengwen, YAO Lianbi, et al. Tunnel monitoring and measuring system using mobile laser scanning: design and deployment[J]. Remote Sensing, 2020, 12(4):730. |
| [44] | SUN Haili, LIU Shuang, ZHONG Ruofei, et al. Cross-section deformation analysis and visualization of shield tunnel based on mobile tunnel monitoring system[J]. Sensors, 2020, 20(4):1006. |
| [45] | YUE Zeyu, SUN Haili, ZHONG Ruofei, et al. Measurement of tunnel clearance convergence using mobile laser detection technology[J]. Canadian Journal of Remote Sensing, 2021, 47(1):100-118. |
| [1] | 程青, 汪博轩, 张洪艳. DRformer:一种渐进式耦合多尺度CNN与浓缩注意力Transformer的高光谱图像超分辨率方法[J]. 测绘学报, 2025, 54(7): 1230-1242. |
| [2] | 赵一鸣, 胡克林, 涂可龙, 卿雅娴, 杨超, 祁昆仑, 吴华意. 基于SAR与光学遥感影像融合的多标签场景分类方法[J]. 测绘学报, 2025, 54(5): 911-923. |
| [3] | 谷宇鹏, 刘万科, 张小红, 胡捷, 胡树杰, 雷维豪, 郑凯. 鱼眼图像支持的GNSS随机模型神经网络生成方法[J]. 测绘学报, 2025, 54(12): 2206-2218. |
| [4] | 潘雄, 赵子瑄, 平常, 金丽宏, 刘立龙. 联合半参数规则学习的电离层TEC预报[J]. 测绘学报, 2025, 54(10): 1741-1756. |
| [5] | 张永军, 朱昌俊, 邹思远, 刘欣怡, 毛庆洲, 万一. 像方距离场与物方平面约束联合的航空影像与激光点云精确配准[J]. 测绘学报, 2025, 54(1): 64-74. |
| [6] | 王艳军, 唐徐超, 王成, 蔡恒藩. 基于道路拓扑关联特征的城乡道路面精细提取网络[J]. 测绘学报, 2025, 54(1): 75-89. |
| [7] | 龚良雄, 李星华, 程远明, 赵兴友, 谢仁平, 王红根. 时空差异增强与自适应特征融合的轻量级遥感影像变化检测网络[J]. 测绘学报, 2025, 54(1): 136-153. |
| [8] | 刘万增, 陈杭, 任加新, 张兆江, 李然, 赵婷婷, 翟曦, 朱秀丽. 基于混合智能的街景影像知识提取方法[J]. 测绘学报, 2024, 53(9): 1817-1828. |
| [9] | 徐涛, 杨元维, 高贤君, 王志威, 潘越, 李少华, 许磊, 王艳军, 刘波, 余静, 吴凤敏, 孙浩宇. 融合图卷积与多尺度特征的接触网点云语义分割[J]. 测绘学报, 2024, 53(8): 1624-1633. |
| [10] | 蒋亚楠, 郑林枫, 许强, 汤明高, 朱星. 机理引导下的阶跃型滑坡位移预测深度学习模型[J]. 测绘学报, 2024, 53(6): 1128-1139. |
| [11] | 彭代锋, 翟晨晨, 周顶蔚, 张永军, 管海燕, 臧玉府. 基于金字塔语义token全局信息增强的高分光学遥感影像变化检测[J]. 测绘学报, 2024, 53(6): 1195-1211. |
| [12] | 丁少鹏, 卢秀山, 刘如飞, 杨懿, 顾海燕, 李海涛. 联合目标特征引导与多重注意力的建筑物变化检测[J]. 测绘学报, 2024, 53(6): 1224-1235. |
| [13] | 刘家兴, 黄玉春, 石文轩, 叶曦, 杨鹤. 顾及拓扑结构的道路标线提取[J]. 测绘学报, 2024, 53(11): 2213-2227. |
| [14] | 江宝得, 黄威, 许少芬, 巫勇. 融合分散自适应注意力机制的多尺度遥感影像建筑物实例细化提取[J]. 测绘学报, 2023, 52(9): 1504-1514. |
| [15] | 张艺超, 郑向涛, 卢孝强. 基于层级Transformer的高光谱图像分类方法[J]. 测绘学报, 2023, 52(7): 1139-1147. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||