测绘学报 ›› 2025, Vol. 54 ›› Issue (12): 2206-2218.doi: 10.11947/j.AGCS.2025.20250213

• 大地测量学与导航 • 上一篇    下一篇

鱼眼图像支持的GNSS随机模型神经网络生成方法

谷宇鹏1(), 刘万科1(), 张小红1,2, 胡捷1, 胡树杰1, 雷维豪1, 郑凯3   

  1. 1.武汉大学测绘学院,湖北 武汉 430079
    2.武汉大学中国南极测绘研究中心,湖北 武汉 430079
    3.武汉理工大学航运学院,湖北 武汉 430063
  • 收稿日期:2025-05-26 修回日期:2025-11-12 出版日期:2026-01-15 发布日期:2026-01-15
  • 通讯作者: 刘万科 E-mail:ypgu1017@whu.edu.cn;wkliu@sgg.whu.edu.cn
  • 作者简介:谷宇鹏(2001—),男,硕士生,研究方向为导航方法与系统。 E-mail:ypgu1017@whu.edu.cn
  • 基金资助:
    国家自然科学基金(42274034; 42504021);广西科技计划项目(桂科AA24263029);湖北省自然科学基金(2024AFA023; 2025AFB652)

Neural network-based GNSS stochastic model generation method by fisheye images

Yupeng GU1(), Wanke LIU1(), Xiaohong ZHANG1,2, Jie HU1, Shujie HU1, Weihao LEI1, Kai ZHENG3   

  1. 1.School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
    2.Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, China
    3.School of Navigation, Wuhan University of Technology, Wuhan 430063, China
  • Received:2025-05-26 Revised:2025-11-12 Online:2026-01-15 Published:2026-01-15
  • Contact: Wanke LIU E-mail:ypgu1017@whu.edu.cn;wkliu@sgg.whu.edu.cn
  • About author:GU Yupeng (2001—), male, postgraduate, majors in navigation techniques and systems. E-mail: ypgu1017@whu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42274034; 42504021);Guangxi Science and Technology Plan Project(桂科AA24263029);Hubei Provincial Natural Science Foundation of China(2024AFA023; 2025AFB652)

摘要:

GNSS能够提供高精度位置服务,然而在城市复杂场景下,受多径效应与非视距信号(NLOS)影响,GNSS观测质量与先验随机模型不匹配,会导致定位性能明显降低。基于鱼眼相机的方法能够利用天空视图信息,降低NLOS观测值的影响,但现有方案大多局限于语义分割层面的应用,未能充分利用图像中的高维环境特征。针对这一问题,本文提出了一种基于神经网络和鱼眼图像的GNSS随机模型生成方法,应用神经网络挖掘图像中反映GNSS观测环境的高维特征,并在交叉注意力层中紧密融合GNSS与图像特征,预测卫星观测值的随机模型。实测结果表明,本文方法能够提取鱼眼图像与GNSS观测环境之间的关联性,准确膨胀异常观测值的方差。并且,在鱼眼图像受误差因素影响的场景下,本文方法能够利用GNSS特征信息的辅助,减小图像误差对预测结果的影响。进一步,将本文方法应用于RTK/IMU组合导航系统,定位精度提升了32.9%,验证了本文方法能够显著减小异常观测值的影响,改善城市复杂场景下系统的定位性能。

关键词: GNSS随机模型, 鱼眼相机, 神经网络, 注意力机制, 城市复杂场景

Abstract:

Global navigation satellite system (GNSS) can provide high-precision positioning services. However, in complex urban environments, the presence of multipath effects and non-line-of-sight (NLOS) signals leads to a mismatch between GNSS observation quality and prior stochastic models, significantly degrading positioning performance. Methods based on fisheye cameras can utilize sky-view information to mitigate the impact of NLOS observations, but existing solutions are mostly limited to semantic segmentation applications and fail to fully exploit the high-dimensional environmental features in images. To address this issue, this paper proposes a neural network-based GNSS stochastic model generation method using fisheye images. The proposed method employs neural networks to extract high-dimensional environmental features from images that reflect GNSS observation conditions and tightly integrates GNSS and image features in a cross-attention layer to predict the stochastic model of satellite observations. Experimental results demonstrate that the proposed method can effectively capture the correlation between fisheye images and GNSS observation environments, accurately inflating the variance of abnormal observations. Moreover, in scenarios where fisheye images are affected by errors, the method can leverage GNSS feature information to reduce the impact of image errors on prediction results. When further applied to a RTK/IMU integrated navigation system, the proposed method improves positioning accuracy by 32.9%, verifying that the proposed method can significantly reduce the influence of abnormal observations and enhance system performance in complex urban environments.

Key words: GNSS stochastic model, fisheye camera, neural networks, attention mechanism, complex urban scenes

中图分类号: