测绘学报 ›› 2025, Vol. 54 ›› Issue (1): 136-153.doi: 10.11947/j.AGCS.2025.20240299
• 摄影测量学与遥感 • 上一篇
龚良雄1(), 李星华2(
), 程远明3, 赵兴友1, 谢仁平4, 王红根1
收稿日期:
2024-07-19
修回日期:
2024-12-12
发布日期:
2025-02-17
通讯作者:
李星华
E-mail:1021386774@qq.com;lixinghua5540@whu.edu.cn
作者简介:
龚良雄(1991—),男,硕士,高级工程师,研究方向为遥感影像智能解译。 E-mail:1021386774@qq.com
基金资助:
Liangxiong GONG1(), Xinghua LI2(
), Yuanming CHENG3, Xingyou ZHAO1, Renping XIE4, Honggen WANG1
Received:
2024-07-19
Revised:
2024-12-12
Published:
2025-02-17
Contact:
Xinghua LI
E-mail:1021386774@qq.com;lixinghua5540@whu.edu.cn
About author:
GONG Liangxiong (1991—), male, master, senior engineer, majors in intelligent interpretation of remote sensing imagery. E-mail: 1021386774@qq.com
Supported by:
摘要:
针对现有遥感影像变化检测方法存在多时相差异特征利用不足、多尺度特征融合不足等问题,提出一种时空差异增强与自适应特征融合的轻量级遥感影像变化检测网络。本文设计了轻量级时空差异增强模块,采用语义变化感知和空间变化感知的双分支结构,组合利用语义自适应增强机制和混合注意力机制,增强双时相特征图的空谱差异。不同尺度特征图通过边缘细化残差模块进一步优化变化区域边缘。还改进了双向特征融合金字塔结构,采用可学习的权重参数来量化不同尺度特征的重要性,实现多尺度特征的有效融合。选取10种主流的变化检测方法,在WHU-CD、LEVIR-CD、SYSU-CD和SECOND数据集上进行模型对比试验,结果表明:SEAFNet相较于多种主流的变化检测方法,在定性分析、定量分析、网络复杂度与准确度平衡方面均取得了比较优异的表现。
中图分类号:
龚良雄, 李星华, 程远明, 赵兴友, 谢仁平, 王红根. 时空差异增强与自适应特征融合的轻量级遥感影像变化检测网络[J]. 测绘学报, 2025, 54(1): 136-153.
Liangxiong GONG, Xinghua LI, Yuanming CHENG, Xingyou ZHAO, Renping XIE, Honggen WANG. A lightweight remote sensing images change detection network utilizing spatio-temporal difference enhancement and adaptive feature fusion[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 136-153.
表1
不同主干网络在不同数据集上的指标对比"
主干网络 | 主干网络复杂度嵌入后网络复杂度 | WHU-CD/(%) | LEVIR-CD/(%) | SYSU-CD/(%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
参数量/M | FLOPs/G | 参数量/M | FLOPs/G | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | |
Res Net18 | 11.18 | 19.05 | 13.44 | 22.31 | 77.12 | 87.08 | 98.83 | 78.61 | 88.02 | 98.85 | 67.23 | 80.40 | 91.23 |
Res Net34 | 21.28 | 38.43 | 23.55 | 41.69 | 72.08 | 83.78 | 98.49 | 79.53 | 88.60 | 98.89 | 66.69 | 80.01 | 91.21 |
V3-Small | 1.14 | 1.35 | 1.73 | 2.71 | 78.34 | 87.86 | 98.92 | 76.93 | 86.96 | 98.75 | 65.92 | 79.46 | 90.99 |
V3-Large | 3.41 | 5.79 | 5.67 | 9.05 | 80.59 | 89.25 | 99.05 | 81.23 | 89.65 | 98.96 | 69.46 | 81.97 | 91.78 |
Swin-S | 48.76 | 89.13 | 32.51 | 51.28 | 83.04 | 90.73 | 99.22 | 82.96 | 91.07 | 99.11 | 68.27 | 81.14 | 91.48 |
Swin-B | 86.64 | 158.3 | 95.52 | 167.01 | 80.50 | 89.20 | 99.04 | 81.39 | 89.74 | 98.97 | 65.48 | 79.14 | 90.52 |
Repvit_m1_1 | 7.77 | 14.37 | 10.04 | 17.63 | 79.44 | 88.54 | 98.99 | 80.33 | 89.09 | 98.92 | 67.27 | 80.43 | 91.26 |
Repvit_m1_5 | 13.62 | 24.43 | 15.88 | 27.69 | 75.54 | 86.06 | 98.77 | 78.22 | 87.78 | 98.83 | 64.70 | 78.57 | 90.69 |
表3
不同模型在不同数据集上的指标对比"
网络模型 | 网络复杂度 | WHU-CD/(%) | LEVIR-CD/(%) | SYSU-CD/(%) | SECOND/(%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
参数量/M | FLOPs/G | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | |
Tiny-CD | 0.29 | 6.18 | 66.34 | 79.76 | 97.91 | 82.16 | 90.21 | 99.02 | 65.10 | 78.86 | 90.31 | 57.20 | 72.78 | 93.95 |
RFANet | 2.86 | 12.65 | 73.28 | 84.58 | 98.52 | 81.11 | 89.57 | 98.95 | 65.61 | 79.24 | 90.53 | 56.51 | 72.22 | 94.39 |
FC-Siam-diff | 1.35 | 18.91 | 64.05 | 78.09 | 97.73 | 73.41 | 84.66 | 98.49 | 65.35 | 79.04 | 90.79 | 50.42 | 67.04 | 93.44 |
SNUNet | 12.03 | 219.33 | 71.59 | 83.45 | 98.40 | 81.33 | 89.49 | 98.96 | 65.64 | 79.25 | 90.71 | 55.04 | 71.00 | 94.00 |
AMTNet | 16.45 | 58.85 | 72.93 | 84.35 | 98.56 | 79.29 | 88.45 | 98.84 | 60.89 | 75.69 | 88.91 | 51.08 | 67.62 | 93.65 |
ChangeFormer | 29.75 | 84.73 | 70.05 | 82.39 | 98.28 | 79.80 | 88.76 | 98.87 | 63.90 | 77.97 | 89.40 | 51.10 | 67.64 | 93.20 |
BIT | 11.47 | 105.24 | 72.49 | 84.11 | 98.45 | 80.62 | 89.27 | 98.92 | 63.72 | 77.30 | 89.18 | 56.79 | 72.44 | 94.45 |
TFI-GR | 27.78 | 38.96 | 76.65 | 86.70 | 98.78 | 80.66 | 89.29 | 98.96 | 67.84 | 81.00 | 91.34 | 55.42 | 71.32 | 93.99 |
CDNeXt | 39.42 | 64.33 | 76.53 | 86.53 | 98.73 | 80.77 | 89.36 | 98.94 | 67.14 | 80.34 | 91.16 | 56.50 | 72.20 | 94.29 |
DMINet | 6.24 | 59.49 | 78.04 | 87.76 | 98.93 | 80.25 | 89.04 | 98.92 | 67.72 | 80.75 | 91.32 | 57.68 | 73.16 | 94.65 |
SEAFNet | 5.67 | 9.05 | 80.77 | 89.36 | 99.06 | 82.74 | 90.73 | 99.08 | 70.64 | 82.76 | 92.16 | 59.79 | 74.83 | 94.76 |
表4
不同分支在不同数据集上的消融试验结果"
分支名称 | WHU-CD/(%) | LEVIR-CD/(%) | SYSU-CD/(%) | SECOND/(%) | 网络复杂度 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
分支1 | 分支2 | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | 参数量/M | FLOPs/G |
× | × | 74.77 | 85.56 | 98.77 | 71.25 | 83.21 | 98.49 | 60.55 | 75.43 | 89.92 | 49.91 | 66.59 | 93.42 | 3.57 | 8.79 |
× | √ | 76.35 | 86.59 | 98.76 | 73.58 | 84.78 | 98.59 | 64.69 | 78.56 | 90.67 | 50.83 | 67.40 | 93.82 | 3.55 | 8.77 |
√ | × | 76.04 | 86.39 | 98.88 | 73.98 | 85.04 | 98.45 | 63.60 | 77.75 | 90.49 | 51.34 | 67.84 | 93.49 | 5.56 | 9.06 |
√ | √ | 77.60 | 87.39 | 98.93 | 77.76 | 87.49 | 98.72 | 65.31 | 79.01 | 90.69 | 52.45 | 68.81 | 93.69 | 5.56 | 9.06 |
表6
不同模块在不同数据集上的消融试验结果"
模块名称 | WHU-CD/(%) | LEVIR-CD/(%) | SYSU-CD/(%) | SECOND/(%) | 网络复杂度 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
STDEM | ERRM | SAPM | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | IoU | F1值 | OA | 参数量/M | FLOPs/G |
√ | √ | √ | 80.59 | 89.25 | 99.05 | 81.23 | 89.65 | 98.96 | 69.46 | 81.97 | 91.78 | 58.93 | 74.16 | 94.67 | 5.67 | 9.05 |
× | √ | √ | 78.59 | 88.01 | 98.92 | 79.57 | 88.62 | 98.89 | 67.73 | 80.76 | 91.52 | 54.66 | 70.68 | 94.35 | 3.68 | 8.78 |
√ | × | √ | 80.43 | 89.16 | 99.04 | 79.87 | 88.81 | 98.89 | 68.57 | 81.35 | 91.63 | 57.17 | 72.75 | 94.19 | 5.67 | 8.99 |
√ | √ | × | 78.79 | 88.14 | 99.02 | 78.17 | 87.75 | 98.79 | 65.76 | 79.35 | 90.92 | 53.52 | 69.72 | 92.96 | 5.57 | 9.13 |
[1] | 刘宣广, 李蒙蒙, 汪小钦, 等. 基于面向对象孪生神经网络的高分辨率遥感影像建筑物变化检测[J]. 遥感学报, 2024, 28(2): 437-454. |
LIU Xuanguang, LI Mengmeng, WANG Xiaoqin, et al. Use of object-based siamese neural network to build change detection from very high resolution remote-sensing images[J]. National Remote Sensing Bulletin, 2024, 28(2): 437-454. | |
[2] |
王超, 王帅, 陈晓, 等. 联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测[J]. 测绘学报, 2023, 52(2): 283-296. DOI:.
doi: 10.11947/j.AGCS.2023.20220202 |
WANG Chao, WANG Shuai, CHEN Xiao, et al. Object-level change detection of multi-sensor optical remote sensing images combined with UNet++ and multi-level difference module[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 283-296. DOI:.
doi: 10.11947/j.AGCS.2023.20220202 |
|
[3] | 柳思聪, 都科丞, 郑永杰, 等. 人工智能时代的遥感变化检测技术:继承、发展与挑战[J]. 遥感学报, 2023, 27(9): 1975-1987. |
LIU Sicong, DU Kecheng, ZHENG Yongjie, et al. Remote sensing change detection technology in the era of artificial intelligence: inheritance, development and challenges[J]. National Remote Sensing Bulletin, 2023, 27(9): 1975-1987. | |
[4] | 徐炜, 王驿飞, 张艳, 等. 基于双边滤波和小目标抑制的异源遥感变化检测[J]. 电子测量技术, 2021, 44(17): 165-172. |
XU Wei, WANG Yifei, ZHANG Yan, et al. Heterogeneous remote sensing image change detection based on bilateral filtering and small target suppression[J]. Electronic Measurement Technology, 2021, 44(17): 165-172. | |
[5] | 邱云飞, 屈照阳, 方立. 结合差异增强的异源遥感影像变化检测网络[J]. 测绘科学, 2024, 49(1): 153-162. |
QIU Yunfei, QU Zhaoyang, FANG Li. Change detection network for heterogeneous remote sensing images with differential augmentation[J]. Science of Surveying and Mapping, 2024, 49(1): 153-162. | |
[6] | 张玉沙, 黄岩, 谭琨, 等. 基于多分类器集成和对象的城市典型地物要素变化检测——以ZY-3影像为例[J]. 地理与地理信息科学, 2018, 34(3): 54-60,130. |
ZHANG Yusha, HUANG Yan, TAN Kun, et al. Change detection of urban typical features based on multi-classifier ensemble and objeets: taking ZY-3 as an example[J]. 2018, 34(3): 54-60,130. | |
[7] | 张晗, 倪维平, 严卫东, 等. 利用分形和多尺度分析的中低分辨率SAR图像变化检测[J]. 武汉大学学报(信息科学版), 2016, 41(5): 642-648. |
ZHANG Han, NI Weiping, YAN Weidong, et al. Mid and low resolution SAR image change detection based on fractal and multi-scale analysis[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 642-648. | |
[8] | 赵元昊, 孙根云, 张爱竹, 等. 基于典型相关分析的遥感影像非监督超像素级变化检测[J]. 遥感学报, 2024, 28(4): 1025-1040. |
ZHAO Yuanhao, SUN Genyun, ZHANG Aizhu, et al. Unsupervised super pixel level change detection based on canonical correlation analysis[J]. National Remote Sensing Bulletin, 2024, 28(4): 1025-1040. | |
[9] | ZHOU Zhenjin, MA Lei, FU Tengyun, et al. Change detection in coral reef environment using high-resolution images: comparison of object-based and pixel-based paradigms[J]. International Journal of Geo-Information, 2018, 7(11): 441. |
[10] | 胡永月, 肖鹏峰, 冯学智, 等. 面向对象变化检测中多时相图像分割模式影响评价[J]. 南京大学学报(自然科学), 2015, 51(5): 1049-1057. |
HU Yongyue, XIAO Pengfeng, FENG Xuezhi, et al. Evaluating the effectiveness of multi-temporal image segmentation on object-based change detection[J]. Journal of Nanjing University (Natural Sciences), 2015, 51(5): 1049-1057. | |
[11] | 韩潇冰. 高分辨率遥感影像“像素-目标-场景”的深度理解方法研究[D]. 武汉: 武汉大学, 2020. |
HAN Xiaobing. “Pixel-obiect-scene” level deep understanding for high spatial resolution remote sensing imagery[D]. Wuhan: Wuhan University, 2020. | |
[12] | WU Chen, ZHANG Liangpei, DU Bo. Kernel slow feature analysis for scene change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 2367-2384. |
[13] | CHEN Jie, HUANG Haozhe, PENG Jian, et al. Contextual information-preserved architecture learning for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14. |
[14] | WANG Min, WANG Peidong. CFM-UNet: a joint CNN and transformer network via cross feature modulation for remote sensing images segmentation[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(4): 40-47. |
[15] | ZHU Qiqi, GUO Xi, DENG Weihuan, et al. Land-use/land-cover change detection based on a siamese global learning framework for high spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184: 63-78. |
[16] | CHEN Zhanlong, LI Shuangjiang, XU Yongyang, et al. Correg-Yolov3: a method for dense buildings detection in high-resolution remote sensing images[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(2): 51-61. |
[17] | CODEGONI A, LOMBARDI G, FERRARI A. Tinycd: a (not so) deep learning model for change detection[J]. Neural Computing and Applications, 2023, 35(11): 8471-8486. |
[18] | YANG Haiping, CHEN Yuanyuan, WU Wei, et al. A lightweight siamese neural network for building change detection using remote sensing images[J]. Remote Sensing, 2023, 15(4): 928. |
[19] | YOU Zhihui, CHEN Sibao, WANG Jiaxin, et al. Robust feature aggregation network for lightweight and effective remote sensing image change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 215: 31-43. |
[20] | HUANG Yanyuan, LI Xinghua, DU Zhengshun, et al. Spatiotemporal enhancement and interlevel fusion network for remote sensing images change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-14. |
[21] | BANDARA W G C, PATEL V M. A transformer-based siamese network for change detection[C]//Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium. Malaysia: IEEE, 2022: 207-210. |
[22] | ZHANG Cui, WANG Liejun, CHENG Shuli, et al. SwinSUNet: pure transformer network for remote sensing image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13. |
[23] | WANG Decheng, CHEN Xiangning, JIANG Mingyong, et al. ADS-Net: an attention-based deeply supervised network for remote sensing image change detection[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101: 102348. |
[24] | 张建兵, 严泽枭, 马淑芳. 用于遥感影像建筑物变化检测的多尺度交叉对偶注意力网络[J]. 地球信息科学学报, 2023, 25(12): 2487-2500. |
ZHANG Jianbing, YAN Zexiao, MA Shufang. Multi-scale cross dual attention network for building change detection in remote sensing images[J]. Geo-Information Science, 2023, 25(12): 2487-2500. | |
[25] | LI Qingyang, ZHONG Ruofei, DU Xin, et al. TransUNetCD: a hybrid transformer network for change detection in optical remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-9. |
[26] | LIANG Shike, HUA Zhen, LI Jinjiang. Enhanced self-attention network for remote sensing building change detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 4900-4915. |
[27] | CHEN Hongruixuan, SONG Jian, HAN Chengxi, et al. ChangeMamba: remote sensing change detection with spatiotemporal state space model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-20. |
[28] | CAYE DAUDT R, LE SAUX B, BOULCH A. Fully convolutional siamese networks for change detection[C]//Proceedings of the 25th IEEE International Conference on Image Processing. Athens: IEEE, 2018: 4063-4067. |
[29] | LI Shujun, HUO Lianzhi. Remote sensing image change detection based on fully convolutional network with pyramid attention[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium. Brussels: IEEE, 2021: 4352-4355. |
[30] |
姜明, 张新长, 孙颖, 等. 全尺度特征聚合的高分辨率遥感影像变化检测网络[J]. 测绘学报, 2023, 52(10): 1738-1748. DOI:.
doi: 10.11947/j.AGCS.2023.20220505 |
JIANG Ming, ZHANG Xinchang, SUN Ying, et al. Full-scale feature aggregation network for high-resolution remote sensing image change detection[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1738-1748. DOI:.
doi: 10.11947/j.AGCS.2023.20220505 |
|
[31] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
[32] | HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1314-1324. |
[33] | LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992-10002. |
[34] | WANG Ao, CHEN Hui, Lin Zijia, et al. RepViT: revisiting mobile CNN from ViT perspective[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 15909-15920. |
[35] | FU Jun, LIU Jing, JIANG Jie, et al. Scene segmentation with dual relation-aware attention network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(6): 2547-2560. |
[36] | WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539. |
[37] | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944. |
[38] | LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768. |
[39] | JI Shunping, WEI Shiqing, LU Meng. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 574-586. |
[40] | CHEN Hao, SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662. |
[41] | SHI Qian, LIU Mengxi, LI Shengchen, et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-16. |
[42] | YANG Kunping, XIA Guisong, LIU Zicheng, et al. A symmetric siamese networks for semantic change detection in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-18. |
[43] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & AMP, Machine Intelligence, 2020, 42(2): 318-327. |
[44] | SUDRE H C, LI W Q, TOM V, et al. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations[C]//Proceedings of 2017 Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Quebec City: Springer, 2017: 240-248. |
[45] | FANG Sheng, LI Kaiyu, SHAO Jinyuan, et al. SNUNet-CD: a densely connected siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. |
[46] | CHEN Hao, QI Zipeng, SHI Zhenwei. Remote sensing image change detection with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14. |
[47] | LIU Wei, LIN Yiyuan, LIU Weijia, et al. An attention-based multiscale transformer network for remote sensing image change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 202: 599-609. |
[48] | LI Zhenglai, TANG Chang, WANG Lizhe. Remote sensing change detection via temporal feature interaction and guided refinement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11. |
[49] | FENG Yuchao, JIANG Jiawei, XU Honghui, et al. Change detection on remote sensing images using dual-branch multilevel intertemporal network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-5. |
[50] | WEI Jinjiang, SUN Kaimin, LI Wenzhuo, et al. Robust change detection for remote sensing images based on temporospatial interactive attention module[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 128: 103767. |
[1] | 王艳军, 唐徐超, 王成, 蔡恒藩. 基于道路拓扑关联特征的城乡道路面精细提取网络[J]. 测绘学报, 2025, 54(1): 75-89. |
[2] | 刘万增, 陈杭, 任加新, 张兆江, 李然, 赵婷婷, 翟曦, 朱秀丽. 基于混合智能的街景影像知识提取方法[J]. 测绘学报, 2024, 53(9): 1817-1828. |
[3] | 鄢薪, 慎利, 潘俊杰, 戴延帅, 王继成, 郑晓莉, 李志林. 多尺度特征融合与空间优化的弱监督高分遥感建筑变化检测[J]. 测绘学报, 2024, 53(8): 1586-1597. |
[4] | 谢志伟, 翟帅智, 张丰源, 陈旻, 孙立双. 面向对象高分影像归纳式图神经网络分类法[J]. 测绘学报, 2024, 53(8): 1610-1623. |
[5] | 徐涛, 杨元维, 高贤君, 王志威, 潘越, 李少华, 许磊, 王艳军, 刘波, 余静, 吴凤敏, 孙浩宇. 融合图卷积与多尺度特征的接触网点云语义分割[J]. 测绘学报, 2024, 53(8): 1624-1633. |
[6] | 杨军, 解恒静, 范红超, 闫浩文. 遥感影像目标检测多尺度熵神经网络架构搜索[J]. 测绘学报, 2024, 53(7): 1384-1400. |
[7] | 殷吉崇, 武芳, 翟仁健, 邱越, 巩现勇, 行瑞星. 面向建筑物轮廓规则化的双路径边界约束与相对论生成对抗网络[J]. 测绘学报, 2024, 53(7): 1444-1457. |
[8] | 宁晓刚, 张翰超, 张瑞倩. 遥感影像高可信智能不变检测技术框架与方法实践[J]. 测绘学报, 2024, 53(6): 1098-1112. |
[9] | 蒋亚楠, 郑林枫, 许强, 汤明高, 朱星. 机理引导下的阶跃型滑坡位移预测深度学习模型[J]. 测绘学报, 2024, 53(6): 1128-1139. |
[10] | 顾海燕, 杨懿, 李海涛, 孙立坚, 丁少鹏, 刘世琦. 高分辨率遥感影像样本库动态构建与智能解译应用[J]. 测绘学报, 2024, 53(6): 1165-1179. |
[11] | 彭代锋, 翟晨晨, 周顶蔚, 张永军, 管海燕, 臧玉府. 基于金字塔语义token全局信息增强的高分光学遥感影像变化检测[J]. 测绘学报, 2024, 53(6): 1195-1211. |
[12] | 王继成, 郭安嵋, 慎利, 蓝天, 徐柱, 李志林. 多级对比学习下的弱监督高分遥感影像城市固废堆场提取[J]. 测绘学报, 2024, 53(6): 1212-1223. |
[13] | 丁少鹏, 卢秀山, 刘如飞, 杨懿, 顾海燕, 李海涛. 联合目标特征引导与多重注意力的建筑物变化检测[J]. 测绘学报, 2024, 53(6): 1224-1235. |
[14] | 纪长琦, 郭肇捷, 孙海丽, 钟若飞. 基于移动激光扫描的地铁隧道渗漏水定位及快速检测方法[J]. 测绘学报, 2024, 53(6): 1236-1250. |
[15] | 李彦胜, 吴敏郎, 张永军. 知识图谱约束深度网络的高分辨率遥感影像场景分类[J]. 测绘学报, 2024, 53(4): 677-688. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 112
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 177
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||