[1] |
周培疆. 现代环境科学概论[M]. 北京: 科学出版社, 2010.
|
|
ZHOU Peijiang. Introduction to modern environmental science [M]. Beijing: Science Press, 2010.
|
[2] |
李国建, 赵爱华, 张益, 等. 城市垃圾处理工程[J]. 北京: 科学出版社, 2003.
|
|
LI Guojian, ZHAO Aihua, ZHANG Yi, et al. Urban garbage treatment engineering [J]. Beijing: Science Press, 2003.
|
[3] |
彭长琪. 固体废物处理与处置技术[M]. 武汉: 武汉理工大学出版社, 2009.
|
|
PENG Changqi. Solid waste treatment and disposal technology [M]. Wuhan: Wuhan University of Technology Press, 2009.
|
[4] |
赵敬, 臧克, 宫辉力, 等. 遥感技术在北京市垃圾定位及处理中的应用[J]. 首都师范大学学报(自然科学版), 2005, 26(3):109-113.
|
|
ZHAO Jing, ZANG Ke, GONG Huili, et al. The application of remote sensing technology on the distribution and disposal of garbage in Beijing[J]. Journal of Capital Normal University, 2005, 26(3):109-113.
|
[5] |
雒立群, 郭舟, 赵文智, 等. 结合高光谱和高空间分辨率影像提取城市固体废弃物堆[J]. 测绘通报, 2016 (2):38-41, 78.
|
|
LUO Liqun, GUO Zhou, ZHAO Wenzhi, et al. Combining hyperspectral and high-resolution images to extract municipal solid waste dumps[J]. Bulletin of Surveying and Mapping, 2016 (2):38-41, 78.
|
[6] |
张方利, 杜世宏, 郭舟. 应用高分辨率影像的城市固体废弃物提取[J]. 光谱学与光谱分析, 2013, 33(8):2024-2030.
|
|
ZHANG Fangli, DU Shihong, GUO Zhou. Extracting municipal solid waste dumps based on high resolution images[J]. Spectroscopy and Spectral Analysis, 2013, 33(8):2024-2030.
|
[7] |
龚健雅, 张觅, 胡翔云, 等. 智能遥感深度学习框架与模型设计[J]. 测绘学报, 2022, 51(4):475-487.DOI:10.11947/j.AGCS.2022.20220027.
|
|
GONG Jianya, ZHANG Mi, HU Xiangyun, et al. The design of deep learning framework and model for intelligent remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4):475-487.DOI:10.11947/j.AGCS.2022.20220027.
|
[8] |
陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8):995-1005.DOI:10.11947/j.AGCS.2021.20210235.
|
|
CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying and mapping: fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):995-1005.DOI:10.11947/j.AGCS.2021.20210235.
|
[9] |
TORRES R N, FRATERNALI P. Learning to identify illegal landfills through scene classification in aerial images[J]. Remote Sensing, 2021, 13(22):4520.
|
[10] |
YOUME O, BAYET T, DEMBELE J M, et al. Deep learning and remote sensing: detection of dumping waste using UAV[J]. Procedia Computer Science, 2021, 185:361-369.
|
[11] |
LI Huifang, HU Chao, ZHONG Xinrun, et al. Solid waste detection in cities using remote sensing imagery based on a location-guided key point network with multiple enhancements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16:191-201.
|
[12] |
NIU Bowen, FENG Quanlong, YANG Jianyu, et al. Solid waste mapping based on very high resolution remote sensing imagery and a novel deep learning approach[J]. Geocarto International, 2023, 38(1):2164361.
|
[13] |
王浩. 融入图卷积全局推理的固废堆场高分遥感检测及其环境影响力评估[D]. 成都: 西南交通大学, 2021.
|
|
WANG Hao. Remote sensing detection of high score in solid waste yard and its environmental impact assessment based on global reasoning of graph volume product[D]. Chengdu: Southwest Jiaotong University, 2021.
|
[14] |
张蜀军. 基于实例分割的高分遥感无序固废堆场识别[D]. 成都: 西南交通大学, 2021.
|
|
ZHANG Shujun. Disorderd solid waste yards recognition from high-resolution remote sensing images based on instance segmentation[D]. Chengdu: Southwest Jiaotong University, 2021.
|
[15] |
TORRES R N, FRATERNALI P. Aerial waste dataset for landfill discovery in aerial and satellite images[J]. Scientific Data, 2023, 10:63.
|
[16] |
季顺平, 魏世清. 遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J]. 测绘学报, 2019, 48(4):448-459.DOI:10.11947/j.AGCS.2019.20180206.
|
|
JI Shunping, WEI Shiqing. Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4):448-459.DOI:10.11947/j.AGCS.2019.20180206.
|
[17] |
龚健雅, 许越, 胡翔云, 等. 遥感影像智能解译样本库现状与研究[J]. 测绘学报, 2021, 50(8):1013-1022.DOI:10.11947/j.AGCS.2021.20210085.
|
|
GONG Jianya, XU Yue, HU Xiangyun, et al. Status analysis and research of sample database for intelligent interpretation of remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1013-1022.DOI:10.11947/j.AGCS.2021.20210085.
|
[18] |
陶超, 阴紫薇, 朱庆, 等. 遥感影像智能解译:从监督学习到自监督学习[J]. 测绘学报, 2021, 50(8):1122-1134.DOI:10.11947/j.AGCS.2021.20210089.
|
|
TAO Chao, YIN Ziwei, ZHU Qing, et al. Remote sensing image intelligent interpretation: from supervised learning to self-supervised learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1122-1134.DOI:10.11947/j.AGCS.2021.20210089.
|
[19] |
张继贤, 李海涛, 顾海燕, 等. 人机协同的自然资源要素智能提取方法[J]. 测绘学报, 2021, 50(8):1023-1032.DOI:10.11947/j.AGCS.2021.20210102.
|
|
ZHANG Jixian, LI Haitao, GU Haiyan, et al. Study on man-machine collaborative intelligent extraction for natural resource features[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1023-1032.DOI:10.11947/j.AGCS.2021.20210102.
|
[20] |
陈军, 艾廷华, 闫利, 等. 智能化测绘的混合计算范式与方法研究[J/OL]. 测绘学报: 1-19 [2024-06-11].http://kns.cnki.net/kcms/detail/11.2089.P.20240415.1049.002.html.
|
|
CHEN Jun, AI Tinghua, YAN li, et al. Hybrid computational paradigm and methods for intelligentized surveying and mapping[J/OL]. Acta Geodaetica et Cartographica Sinica: 1-19 [2024-06-11].http://kns.cnki.net/kcms/detail/11.2089.P.20240415.1049.002.html.
|
[21] |
WANG Yude, ZHANG Jie, KAN Meina, et al. Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 12275-12284.
|
[22] |
WANG Jicheng, YAN Xin, SHEN Li, et al. Scale-invariant multi-level context aggregation network for weakly supervised building extraction[J]. Remote Sensing, 2023, 15(5):1432.
|
[23] |
CHAN L, HOSSEINI M S, PLATANIOTIS K N. A comprehensive analysis of weakly-supervised semantic segmentation in different image domains[J]. International Journal of Computer Vision, 2021, 129(2):361-384.
|
[24] |
ZHOU Bolei, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2921-2929.
|
[25] |
CAO Yinxia, HUANG Xin. A coarse-to-fine weakly supervised learning method for green plastic cover segmentation using high-resolution remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188:157-176.
|
[26] |
FU Kun, LU Wanxuan, DIAO Wenhui, et al. WSF-NET: weakly supervised feature-fusion network for binary segmentation in remote sensing image[J]. Remote Sensing, 2018, 10(12):1970.
|
[27] |
YAN Xin, SHEN Li, WANG Jicheng, et al. MSG-SR-net: a weakly supervised network integrating multiscale generation and superpixel refinement for building extraction from high-resolution remotely sensed imageries[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:1012-1023.
|
[28] |
LI Zhenshi, ZHANG Xueliang, XIAO Pengfeng, et al. On the effectiveness of weakly supervised semantic segmentation for building extraction from high-resolution remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:3266-3281.
|
[29] |
CHEN Jie, HE Fen, ZHANG Yi, et al. SPMF-net: weakly supervised building segmentation by combining superpixel pooling and multi-scale feature fusion[J]. Remote Sensing, 2020, 12(6):1049.
|
[30] |
FANG Fang, ZHENG Daoyuan, LI Shengwen, et al. Improved pseudomasks generation for weakly supervised building extraction from high-resolution remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:1629-1642.
|
[31] |
YAN Xin, SHEN Li, WANG Jicheng, et al. PANet: pixelwise affinity network for weakly supervised building extraction from high-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.
|
[32] |
鄢薪, 慎利, 潘俊杰, 等. 多尺度特征融合与空间优化的弱监督高分遥感建筑变化检测[J/OL]. 测绘学报: 1-14 [2024-02-17].http://kns.cnki.net/kcms/detail/11.2089.P.20231109.1026.002.html.
|
|
YAN Xin, SHEN Li, PAN Junjie, et al. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images[J/OL]. Acta Geodaetica et Cartographica Sinica: 1-14 [2024-02-17].http://kns.cnki.net/kcms/detail/11.2089.P.20231109.1026.002.html.
|
[33] |
ZHOU Tianfei, ZHANG Meijie, ZHAO Fang, et al. Regional semantic contrast and aggregation for weakly supervised semantic segmentation[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 4299-4309.
|
[34] |
YOON S H, KWEON H, JEONG J, et al. Exploring pixel-level self-supervision for weakly supervised semantic segmentation[EB/OL]. [2024-01-25]. https://arxiv.org/pdf/2112.05351.pdf.
|
[35] |
KHOSLA P, TETERWAK P, WANG Chen, et al. Supervised contrastive learning[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: ACM Press, 2020: 18661-18673.
|
[36] |
WANG Wenguan, SUN Guolei, VAN GOOL L. Looking beyond single images for weakly supervised semantic segmentation learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(3):1635-1649.
|
[37] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
[38] |
CHATTOPADHAY A, SARKAR A, HOWLADER P, et al. Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe: IEEE, 2018: 839-847.
|