[1] WANG Kexian, ZHENG Shunyi, LI Rui, et al. A deep double-channel dense network for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 46-62. [2] WANG Yanjun, LI Shaochun, WANG Mengjie, et al. A simple deep learning network for classification of 3D mobile LiDAR point clouds[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 49-59. [3] YAO Jiaqi, LI Guoyuan, CHEN Jiyi, et al. Cloud detection and centroid extraction of laser footprint image of GF-7 satellite laser altimetry[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 1-12. [4] 吴俊斌, 吴晟, 吴兴蛟. 矢量填充和插值算法的图像放大[J]. 计算机与数字工程, 2016, 44(6): 1146-1150, 1166. WU Junbin, WU Sheng, WU Xingjiao. Vector filling and interpolation algorithms of image magnification[J]. Computer & Digital Engineering, 2016, 44(6): 1146-1150, 1166. [5] 龙四春, 周威, 文佳胜, 等. 雷达地形测绘DEM空洞插补方法研究[J]. 遥感信息, 2015, 30(4): 20-24, 36. LONG Sichun, ZHOU Wei, WEN Jiasheng, et al. SRTM DEM voids interpolation method based on Matlab[J]. Remote Sensing Information, 2015, 30(4): 20-24, 36. [6] 边刚, 金绍华, 夏伟, 等. 线性插值的海洋磁力测量测线布设评价方法[J]. 测绘学报, 2014, 43(7): 675-680, 697. BIAN Gang, JIN Shaohua, XIA Wei, et al. Evaluating method of the survey line layout based on the linear interpolation in marine magnetic survey[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(7): 675-680, 697. [7] 秦彦平, 张军, 多化琼, 等. 木材节子图像增强的小波变换与双三次插值融合方法[J]. 西北林学院学报, 2021, 36(5): 183-189. QIN Yanping, ZHANG Jun, DUO Huaqiong, et al. Fusion method of wavelet transform and bicubic interpolation for wood knot image enhancement[J]. Journal of Northwest Forestry University, 2021, 36(5): 183-189. [8] 汪智易. 基于流形学习的图像超分辨率重建研究[D]. 西安: 西安电子科技大学, 2014. WANG Zhiyi. Research on image super-resolution reconstruction based on manifold learning[D]. Xi'an: Xidian University, 2014. [9] 陶志强, 李海林, 张红兵. 基于新边缘指导插值的迭代反投影超分辨率重建算法[J]. 计算机工程, 2016, 42(6): 255-260. TAO Zhiqiang, LI Hailin, ZHANG Hongbing. Iterative back projection super resolution reconstruction algorithm based on new edge directed interpolation[J]. Computer Engineering, 2016, 42(6): 255-260. [10] 苏锦程, 胡勇, 巩彩兰. 一种混合红外云图超分辨率重建算法[J]. 红外, 2018, 39(8): 34-39. SU Jincheng, HU Yong, GONG Cailan. A super-resolution reconstruction algorithm for hybrid infrared cloud images[J]. Infrared, 2018, 39(8): 34-39. [11] 郭桐宇. 基于导向滤波与迭代反向投影的遥感影像超分辨率重建[J]. 测绘与空间地理信息, 2019, 42(1): 195-197, 205. GUO Tongyu. Super resolution reconstruction of remote sensing image based on improved iterative back projection algorithm[J]. Geomatics & Spatial Information Technology, 2019, 42(1): 195-197, 205. [12] 杨琇卿. 基于Lanczos插值的迭代反投影图像超分辨率算法[D]. 济南: 山东大学, 2018. YANG Xiuqing. An iterative back-projection image super-resolution algorithm based on Lanczos interpolation[D]. Jinan: Shandong University, 2018. [13] 许丽娜, 何鲁晓. 基于凸集投影的高分四号卫星影像超分辨率重建[J]. 测绘学报, 2017, 46(8): 1026-1033. DOI: 10.11947/j.AGCS.2017.20170070. XU Lina, HE Luxiao. GF-4 images super resolution reconstruction based on POCS[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8): 1026-1033. DOI: 10.11947/j.AGCS.2017.20170070. [14] 陈波. 自适应光学图像复原理论与算法研究[D]. 郑州:信息工程大学, 2008. CHEN Bo. The theory and algorithms of adaptive optics image restoration[D]. Zhengzhou:Information Engineering University, 2008. [15] 武兴睿. 基于PSF重构和改进的最大后验估计的自适应光学图像复原算法[J]. 液晶与显示, 2019, 34(9): 921-927. WU Xingrui. Adaptive optical image restoration method based on PSF reconstruction and improved maximum posteriori estimation[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(9): 921-927. [16] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. [17] CAO Hangpu, MI Sicheng. Weighted SRGAN and reconstruction loss analysis for accurate image super resolution[C]//Proceedings of 2021 Modelling and Intelligent Computing Conference. Guilin, China: CAMMIC, 2021. [18] WANG X, YU K, WU S, et al. Esrgan: enhanced super-resolution generative adversarial networks[C]//Proceedings of 2018 European Conference on Computer Vision (ECCV) Workshops. Munich, Germany: Springer: 2018. [19] ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[C]//Proceedings of 2019 International Conference on Machine Learning. [S.l.]:PMLR, 2019: 7354-7363. [20] SALIMANS T, KINGMA D P. Weight normalization: a simple reparameterization to accelerate training of deep neural networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: ACM Press, 2016: 901-909. [21] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. New York, NY, USA: ACM Press, 2015, 37: 448-456. [22] JOLICOEUR-MARTINEAU A. The relativistic discriminator: a key element missing from standard GAN[EB/OL]. [2022-01-01]. https://arxiv.org/abs/1807.00734. [23] 余志凡, 李昊, 李登实, 等. 基于Gram矩阵和卷积神经网络的风格迁移算法[J]. 江汉大学学报(自然科学版), 2020, 48(3): 62-68. YU Zhifan, LI Hao, LI Dengshi, et al. Style transfer algorithm based on gram matrix and convolutional[J]. Journal of Jianghan University (Natural Science Edition), 2020, 48(3): 62-68. [24] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-11-20]. https://arxiv.org/abs/1409.1556. [25] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA:IEEE, 2009: 248-255. [26] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2021-11-20]. https://arxiv.org/abs/1412.6980. [27] SHI W, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016: 1874-1883. [28] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Honolulu, USA:IEEE, 2017: 136-144. [29] LEI Sen, SHI Zhenwei. Hybrid-scale self-similarity exploitation for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-10. |