[1] CHERIYADAT A M. Unsupervised feature learning for aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):439-451. [2] MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2):645-657. [3] LUO Bin, ZHANG Liangpei. Robust autodual morphological profiles for the classification of high-resolution satellite images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1451-1462. [4] HAN Junwei, ZHANG Dingwen, CHENG Gong, et al. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6):3325-3337. [5] HUANG Xin, ZHANG Liangpei. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):257-272. [6] 林祥国, 张继贤. 面向对象的形态学建筑物指数及其高分辨率遥感影像建筑物提取应用[J]. 测绘学报, 2017, 46(6):724-733. DOI:10.11947/j.AGCS.2017.20170068. LIN Xiangguo, ZHANG Jixian. Object-based morphological building index for building extraction from high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(6):724-733. DOI:10.11947/j.AGCS.2017.20170068. [7] CIRESAN D C, MEIER U, MASCI J, et al. Flexible, high performance convolutional neural networks for image classification[C]//Proceedings of the 21st International Joint Conference on Artificial Intelligence. Barcelona:AIAA Press, 2011. [8] YUAN Jiangye. Automatic building extraction in aerial scenes using convolutional networks[J/OL]. (2016-02-21)[2017-05-23].https://arxiv.org/abs/1602.06564. [9] VAKALOPOULOU M, KARANTZALOS K, KOMODAKIS N, et al. Building detection in very high resolution multispectral data with deep learning features[C]//Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan:IEEE, 2015:1873-1876. [10] DENG Weihong, HU Jiani, LU Jiwen, et al. Transform-invariant PCA:a unified approach to fully automatic facealignment, representation, and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6):1275-1284. [11] 陈洋, 范荣双, 王竞雪, 等. 基于深度学习的资源三号卫星遥感影像云检测方法[J]. 光学学报, 2018, 38(1):0128005. CHEN Yang, FAN Rongshuang, WANG Jingxue, et al. Cloud detection of ZY-3 satellite remote sensing images based on deep learning[J]. Acta Optica Sinica, 2018, 38(1):0128005. [12] 黄听. 高分辨率遥感影像多尺度纹理、形状特征提取与面向对象分类研究[D]. 武汉:武汉大学, 2009:71-76. HUANG Xin. Multiscale texture and shape feature extraction and object-oriented classification for very high resolution remotely sensed imagery[D]. Wuhan:Wuhan University, 2009:71-76. [13] XIAO Xuefeng, JIN Lianwen, YANG Yafeng, et al. Building fast and compact convolutional neural networks for offline handwritten Chinese character recognition[J]. Pattern Recognition, 2017, 72(5):72-81. [14] CHEN Jiangbo, WANG Chengyi, MA Zhong, et al. Remote sensing scene classification based on convolutional neural networks pre-trained using attention-guided sparse filters[J]. Remote Sensing, 2018, 10(2):290. [15] SIRINUKUNWATTANA K, AHMED RAZA S E, TSANG Y W, et al. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images[J]. IEEE Transactions on Medical Imaging, 2016, 35(5):1196-1206. [16] NGO T A, LU Zhi, CARNEIRO G. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance[J]. Medical Image Analysis, 2017, 35(2):159-171. [17] ZOU Qin, NI Lihao, ZHANG Tong, et al. Deep learning based feature selection for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11):2321-2325. [18] ZHAO Wenzhi, GUO Zhou, YUE Jun, et al. On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery[J]. International Journal of Remote Sensing, 2015, 36(13):3368-3379. [19] 陈洋, 范荣双, 王竟雪, 等. 结合最小噪声分离变换和卷积神经网络的高分辨影像分类方法[J]. 激光与光电子学进展, 2017, 54(10):102801. CHEN Yang, FAN Rongshuang, WANG Jingxue, et al. High resolution image classification method combining with minimum noise fraction rotation and convolution neural network[J]. Laser & Optoelectronics Progress, 2017, 54(10):102801. [20] NOGUEIRA K, PENATTI O A B, DOS SANTOS J A D. Towards better exploiting convolutional neural networks for remote sensing scene classification[J]. Pattern Recognition, 2017, 61(7):539-556. [21] LI Zhe, REN Ao, LI Ji, et al. Structural design optimization for deep convolutional neural networks using stochastic computing[C]//Proceedings of 2017 Conference on Design, Automation & Test in Europe. Lausanne, Switzerland:IEEE, 2017:250-253. [22] CHEN Yang, FAN Rongshuang, YANG Xiucheng, et al. Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning[J]. Water, 2018, 10(5):585. [23] DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. [24] CHEN Yang, FAN Rongshuang, BILAL M, et al. Multilevel cloud detection for high-resolution remote sensing imagery using multiple convolutional neural networks[J]. ISPRS International Journal of Geo-information, 2018, 7(5):181. [25] MA Xiaorui, WANG Hongyu, GENG Jie. Spectral-spatial classification of hyperspectral image based on deep auto-encoder[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9):4073-4085. |