测绘学报 ›› 2025, Vol. 54 ›› Issue (1): 90-103.doi: 10.11947/j.AGCS.2025.20230302
• 摄影测量学与遥感 • 上一篇
收稿日期:
2023-07-21
修回日期:
2024-12-05
发布日期:
2025-02-17
通讯作者:
陈国良
E-mail:zh_zhang@cumt.edu.cn;chgl_cumt@163.com
作者简介:
张正华(1993—),男,博士,博士后,主要研究方向为激光雷达定位与导航。 E-mail:zh_zhang@cumt.edu.cn
基金资助:
Zhenghua ZHANG(), Guoliang CHEN(
)
Received:
2023-07-21
Revised:
2024-12-05
Published:
2025-02-17
Contact:
Guoliang CHEN
E-mail:zh_zhang@cumt.edu.cn;chgl_cumt@163.com
About author:
ZHANG Zhenghua (1993—), male, PhD, postdoctor, majors in LiDAR-based localization and navigation. E-mail: zh_zhang@cumt.edu.cn
Supported by:
摘要:
激光雷达位置识别技术是自动驾驶、机器人导航等领域实现全局定位的关键技术,现有方法注重提升模型特征表达能力,但忽视保持位置识别过程对点云旋转的不变性,且存在参数量大、依赖复杂预处理流程等问题。对此,本文提出一种名为RIP-Net的超轻量级位置识别深度学习网络。首先,快速获取场景局部区域点簇并构建底层旋转不变特征;然后,使用残差结构与注意力机制,融合多尺度信息实现局部区域的增强感知;最后,利用广义平均池化函数聚合场景全局特征,并基于特征距离实现位置识别与定位。在4个大规模场景点云数据集上的试验结果表明:RIP-Net不仅可实现对点云旋转的不变性,各项精度指标均优于现有方法,且模型参数量仅为30万,相比现有方法显著降低;此外,RIP-Net可无须数据预处理,直接使用原始点云实现精准位置识别定位,具备良好的实用性。
中图分类号:
张正华, 陈国良. 一种轻量且旋转不变的激光雷达位置识别网络[J]. 测绘学报, 2025, 54(1): 90-103.
Zhenghua ZHANG, Guoliang CHEN. A lightweight rotation-invariant network for LiDAR-based place recognition[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 90-103.
表2
Oxford数据集试验结果"
方法 | 参数量 | 运算时间/ms | 准确率/(%) | 最近邻召回率/(%) | 前1%召回率/(%) | F1值 |
---|---|---|---|---|---|---|
PointNetVLAD | 19.78×106 | 15 | 11.96 | 15.01 | 31.31 | 0.20 |
PCAN | 20.42×106 | 55 | 12.82 | 14.81 | 32.81 | 0.21 |
EPC-Net | 4.70×106 | 26 | 59.97 | 59.78 | 80.93 | 0.74 |
MinkLoc3D | 1.06×106 | 12 | 85.62 | 74.26 | 90.14 | 0.91 |
MinkLoc++ | 1.06×106 | 12 | 73.70 | 80.79 | 92.75 | 0.84 |
PPT-Net | 13.39×106 | 22 | 61.03 | 61.55 | 82.82 | 0.75 |
SVT-Net | 0.94×106 | 11 | 77.23 | 72.21 | 89.41 | 0.86 |
LWR-Net | 0.44×106 | 10 | 41.39 | 40.93 | 62.80 | 0.57 |
SOE-Net | 19.40×106 | 22 | 86.56 | 86.72 | 95.60 | 0.92 |
RPR-Net | 1.10×106 | 238 | — | 81.00 | 92.20 | — |
VNI-Net | 2.20×106 | 574 | — | 85.50 | 94.40 | — |
RIP-Net | 0.30×106 | 9 | 87.50 | 87.57 | 95.83 | 0.93 |
表3
Inhouse数据集不同场景下模型泛化性能试验结果"
方法 | 大学校园场景 | 居民区场景 | 商业区场景 | ||||||
---|---|---|---|---|---|---|---|---|---|
最近邻召回率/(%) | 前1%召回率/(%) | F1值 | 最近邻召回率/(%) | 前1%召回率/(%) | F1值 | 最近邻召回率/(%) | 前1%召回率/(%) | F1值 | |
PointNetVLAD | 18.16 | 33.76 | 0.20 | 15.17 | 28.42 | 0.20 | 17.39 | 26.12 | 0.27 |
PCAN | 10.56 | 25.00 | 0.18 | 11.95 | 23.31 | 0.17 | 12.99 | 19.42 | 0.22 |
EPC-Net | 60.10 | 80.56 | 0.75 | 51.89 | 70.77 | 0.68 | 57.48 | 69.44 | 0.73 |
MinkLoc3D | 57.17 | 68.27 | 0.81 | 44.88 | 60.54 | 0.77 | 46.13 | 63.79 | 0.82 |
MinkLoc++ | 65.91 | 81.83 | 0.74 | 65.73 | 75.94 | 0.63 | 57.11 | 76.20 | 0.63 |
PPT-Net | 42.53 | 69.08 | 0.65 | 54.83 | 68.14 | 0.60 | 40.59 | 61.56 | 0.73 |
SVT-Net | 53.47 | 69.00 | 0.79 | 52.28 | 68.34 | 0.76 | 67.44 | 78.76 | 0.81 |
LWR-Net | 41.80 | 64.42 | 0.60 | 41.66 | 62.96 | 0.58 | 56.22 | 68.76 | 0.73 |
SOE-Net | 77.32 | 90.71 | 0.87 | 76.08 | 89.78 | 0.86 | 76.35 | 81.32 | 0.89 |
VNI-Net | 85.30 | 95.00 | — | 83.30 | 91.50 | — | 81.40 | 86.80 | — |
RPR-Net | 83.20 | 94.50 | — | 83.30 | 91.30 | — | 80.40 | 86.40 | — |
RIP-Net | 85.35 | 95.31 | 0.91 | 83.49 | 92.10 | 0.89 | 77.96 | 84.52 | 0.87 |
[1] | 戴德云. 基于多元信息融合的场景多层级识别方法研究[D]. 合肥: 中国科学技术大学, 2022. |
DAI Deyun. Research on multi-level scene recognition method based on multi-information fusion[D]. Hefei: University of Science and Technology of China, 2022. | |
[2] |
杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018, 47(7): 893-898. DOI:.
doi: 10.11947/J.AGCS.2018.20180149 |
YANG Yuanxi. Resilient PNT concept frame[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 893-898. DOI:.
doi: 10.11947/j.AGCS.2018.20180149 |
|
[3] |
张星, 林静, 李清泉, 等. 结合感知哈希与空间约束的室内连续视觉定位方法[J]. 测绘学报, 2021, 50(12): 1639-1649.DOI:.
doi: 10.11947/J.AGCS.2021.20200286 |
ZHANG Xing, LIN Jing, LI Qingquan, et al. Indoor continuous visual positioning method combining perceptual hashing and spatial constraints[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1639-1649.DOI:.
doi: 10.11947/J.AGCS.2021.20200286 |
|
[4] | 张恒才, 蔚保国, 秘金钟, 等. 综合PNT场景增强系统研究进展及发展趋势[J]. 武汉大学学报(信息科学版), 2023, 48(4): 491-505. |
ZHANG Hengcai, YU Baoguo, BEI Jinzhong, et al. A survey of scene-based augmentation systems for conprehensive PNT[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 491-505. | |
[5] | 张正华. 基于深度学习的激光雷达点云实时配准与场景识别算法研究[D]. 徐州: 中国矿业大学, 2022. |
ZHANG Zhenghua. Study on deep-learning-based real-time registration and place recognition algorithm for LiDAR point cloud[D]. Xuzhou: China University of Mining and Technology, 2022. | |
[6] | WOHLKINGER W, VINCZE M. Ensemble of shape functions for 3D object classification[C]//Proceedings of 2011 IEEE International Conference on Robotics and Biomimetics. Karon Beach: IEEE, 2011. |
[7] | HE Li, WANG Xiaolong, ZHANG Hong. M2DP: a novel 3D point cloud descriptor and its application in loop closure detection[C]//Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon: IEEE, 2016: 231-237. |
[8] | KIM G, KIM A. Scan context: egocentric spatial descriptor for place recognition within 3D point cloud map[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018: 4802-4809. |
[9] |
杨必胜, 董震. 点云智能研究进展与趋势[J]. 测绘学报, 2019, 48(12): 1575-1585.DOI:.
doi: 10.11947/j.AGCS.2019.20190465 |
YANG Bisheng, DONG Zhen. Progress and perspective of point cloud intelligence[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1575-1585.DOI:.
doi: 10.11947/j.AGCS.2019.20190465 |
|
[10] | UY M A, LEE G H. PointNetVLAD: deep point cloud based retrieval for large-scale place recognition[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. |
[11] | CHARLES R Q, HAO Su, MO Kaichun, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. |
[12] | ARANDJELOVIC R, GRONAT P, TORII A, et al. NetVLAD: CNN architecture for weakly supervised place recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. |
[13] | ZHANG Wenxiao, XIAO Chunxia. PCAN: 3D attention map learning using contextual information for point cloud based retrieval[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. |
[14] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. [2023-12-10]. https://doi.org/10.48550/arXiv.1706.03762. |
[15] | LIU Zhe, ZHOU Shunbo, SUO Chuanzhe, et al. LPD-net: 3D point cloud learning for large-scale place recognition and environment analysis[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019. |
[16] | HUI L, CHENG M, XIE J, et al. Efficient 3D point cloud feature learning for large-scale place recognition[J]. IEEE Transactions on Image Processing, 2022, 31: 1258-1270. |
[17] | KOMOROWSKI J. MinkLoc3D: point cloud based large-scale place recognition[C]//Proceedings of 2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021. |
[18] | RADENOVIC F, TOLIAS G, CHUM O. Fine-tuning CNN image retrieval with no human annotation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(7): 1655-1668. |
[19] | XU Tianxing, GUO Yuanchen, LI Zhiqiang, et al. TransLoc3D: point cloud based large-scale place recognition using adaptive receptive fields[J]. Communications in Information and Systems, 2023, 23(1): 57-83. |
[20] | FAN Z, SONG Z, LIU H, et al. SVT-Net: super light-weight sparse voxel transformer for large scale place recognition[J]. AAAI Conference on Artificial Intelligence. 2022, 36(1), 551-560. |
[21] | TIAN Gengxuan, ZHAO Junqiao, CAI Yingfeng, et al. VNI-Net: vector neurons-based rotation-invariant descriptor for LiDAR place recognition[EB/OL]. [2023-10-15]. https://arxiv.org/abs/2308.12870v1. |
[22] | FAN Zhaoxin, SONG Zhenbo, LIU Hongyan, et al. SVT-net: super light-weight sparse voxel transformer for large scale place recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(1): 551-560. |
[23] | XIA Yan, XU Yusheng, LI Shuang, et al. SOE-net: a self-attention and orientation encoding network for point cloud based place recognition[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. |
[24] | MADDERN W, PASCOE G, LINEGAR C, et al. 1 year, 1000 km: the Oxford RobotCar dataset[J]. The International Journal of Robotics Research, 2017, 36(1): 3-15. |
[25] | KIM G, PARK Y S, CHO Y, et al. MulRan: multimodal range dataset for urban place recognition[C]//Proceedings of 2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020. |
[26] | LAZANYI K. Are we ready for self-driving cars-a case of principal-agent theory[C]//Proceedings of 2018 IEEE International Symposium on Applied Computational Intelligence and Informatics. Timisoara: IEEE, 2018. |
[27] | HUI Le, YANG Hang, CHENG Mingmei, et al. Pyramid point cloud transformer for large-scale place recognition[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021. |
[28] | ZHANG Z, CHEN G, SHU M, et al. LWR-Net: robust and lightweight place recognition network for noisy and low-density point clouds[J]. Sensors (Basel, Switzerland), 2023, 23(21): 8664. |
[29] | KOMOROWSKI J, WYSOCZANSKA M, TRZCINSKI T. MinkLoc++: LiDAR and monocular image fusion for place recognition[C]//Proceedings of 2021 International Joint Conference on Neural Networks. Shenzhen: IEEE, 2021. |
[30] | ZHANG W, QI J, WAN P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing. 2016, 8(6), 501. |
[1] | 石岩, 王达, 邓敏, 杨学习. 时空异常探测:从数据驱动到知识驱动的内涵转变与实现路径[J]. 测绘学报, 2024, 53(8): 1493-1504. |
[2] | 鄢薪, 慎利, 潘俊杰, 戴延帅, 王继成, 郑晓莉, 李志林. 多尺度特征融合与空间优化的弱监督高分遥感建筑变化检测[J]. 测绘学报, 2024, 53(8): 1586-1597. |
[3] | 布金伟, 余科根, 汪秋兰, 李玲惠, 刘馨雨, 左小清, 常军. 融合星载GNSS-R数据和多变量参数全球海洋有效波高深度学习反演法[J]. 测绘学报, 2024, 53(7): 1321-1335. |
[4] | 江利明, 邵益, 周志伟, 马培峰, 王腾. 智能化InSAR数据处理研究进展、挑战与展望[J]. 测绘学报, 2024, 53(6): 1037-1056. |
[5] | 郭迟, 刘阳, 罗亚荣, 刘经南, 张全. 图像语义信息在视觉SLAM中的应用研究进展[J]. 测绘学报, 2024, 53(6): 1057-1076. |
[6] | 龚循强, 汪宏宇, 鲁铁定, 游为. 高铁桥墩沉降的通用渐进分解长期预测网络模型[J]. 测绘学报, 2024, 53(6): 1113-1127. |
[7] | 顾海燕, 杨懿, 李海涛, 孙立坚, 丁少鹏, 刘世琦. 高分辨率遥感影像样本库动态构建与智能解译应用[J]. 测绘学报, 2024, 53(6): 1165-1179. |
[8] | 丁少鹏, 卢秀山, 刘如飞, 杨懿, 顾海燕, 李海涛. 联合目标特征引导与多重注意力的建筑物变化检测[J]. 测绘学报, 2024, 53(6): 1224-1235. |
[9] | 刘慧敏, 张陈为, 谌恺祺, 邓敏, 彭翀. 基于深度学习的城市PM2.5浓度时空分布预测及不确定性评估[J]. 测绘学报, 2024, 53(4): 750-760. |
[10] | 孙传猛, 魏宇, 李欣宇, 马铁华, 武志博. 复杂场景下无水尺水位的影像水位反演智能检测方法[J]. 测绘学报, 2024, 53(3): 558-568. |
[11] | 廖钊宏, 张依晨, 杨飚, 林明春, 孙文博, 高智. 基于Swin Transformer-CNN的单目遥感影像高程估计方法及其在公路建设场景中的应用[J]. 测绘学报, 2024, 53(2): 344-352. |
[12] | 林云浩, 王艳军, 李少春, 蔡恒藩. 一种耦合DeepLab与Transformer的农作物种植类型遥感精细分类方法[J]. 测绘学报, 2024, 53(2): 353-366. |
[13] | 刘瑾, 季顺平. 深度和法线联合估计的深度学习多视密集匹配方法[J]. 测绘学报, 2024, 53(12): 2391-2403. |
[14] | 王密, 程昫, 潘俊, 皮英冬, 肖晶. 大模型赋能智能摄影测量:现状、挑战与前景[J]. 测绘学报, 2024, 53(10): 1955-1966. |
[15] | 罗飘, 许俊奎, 武芳, 吕亚坤, 庄清文. 一种生成式神经网络的道路简化方法[J]. 测绘学报, 2024, 53(10): 2007-2020. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 65
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 98
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||