测绘学报 ›› 2025, Vol. 54 ›› Issue (1): 90-103.doi: 10.11947/j.AGCS.2025.20230302

• 摄影测量学与遥感 • 上一篇    

一种轻量且旋转不变的激光雷达位置识别网络

张正华(), 陈国良()   

  1. 中国矿业大学环境与测绘学院,江苏 徐州 221116
  • 收稿日期:2023-07-21 修回日期:2024-12-05 发布日期:2025-02-17
  • 通讯作者: 陈国良 E-mail:zh_zhang@cumt.edu.cn;chgl_cumt@163.com
  • 作者简介:张正华(1993—),男,博士,博士后,主要研究方向为激光雷达定位与导航。 E-mail:zh_zhang@cumt.edu.cn
  • 基金资助:
    国家自然科学基金(42394065);江苏省自然科学基金(BK20241646);中国博士后科学基金面上项目(2022M723377);中央高校基本科研业务费项目(2024QN11082)

A lightweight rotation-invariant network for LiDAR-based place recognition

Zhenghua ZHANG(), Guoliang CHEN()   

  1. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
  • Received:2023-07-21 Revised:2024-12-05 Published:2025-02-17
  • Contact: Guoliang CHEN E-mail:zh_zhang@cumt.edu.cn;chgl_cumt@163.com
  • About author:ZHANG Zhenghua (1993—), male, PhD, postdoctor, majors in LiDAR-based localization and navigation. E-mail: zh_zhang@cumt.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42394065);Jiangsu Provincial Natural Science Foundation(BK20241646);China Postdoctoral Science Foundation(2022M723377);The Fundamental Research Funds for the Central Universities(2024QN11082)

摘要:

激光雷达位置识别技术是自动驾驶、机器人导航等领域实现全局定位的关键技术,现有方法注重提升模型特征表达能力,但忽视保持位置识别过程对点云旋转的不变性,且存在参数量大、依赖复杂预处理流程等问题。对此,本文提出一种名为RIP-Net的超轻量级位置识别深度学习网络。首先,快速获取场景局部区域点簇并构建底层旋转不变特征;然后,使用残差结构与注意力机制,融合多尺度信息实现局部区域的增强感知;最后,利用广义平均池化函数聚合场景全局特征,并基于特征距离实现位置识别与定位。在4个大规模场景点云数据集上的试验结果表明:RIP-Net不仅可实现对点云旋转的不变性,各项精度指标均优于现有方法,且模型参数量仅为30万,相比现有方法显著降低;此外,RIP-Net可无须数据预处理,直接使用原始点云实现精准位置识别定位,具备良好的实用性。

关键词: 激光雷达位置识别, 轻量化模型, 旋转不变, 全局定位, 深度学习

Abstract:

Accurate place recognition using LiDAR is critical for achieving global localization in domains such as autonomous driving or robot navigation. While the state-of-the-art methods focus on enhancing the feature encoding capability, they often neglect the essential requirement of maintaining rotation invariance in the place recognition process. Additionally, these methods suffer from challenges, such as the large model size and their dependence on complex preprocessing procedures. To address these challenges, this paper introduces RIP-Net, a super lightweight neural network designed for rotation-invariant place recognition of point clouds. Firstly, RIP-Net gathers point clusters of local regions and constructs basic rotation-invariant features; Secondly, the residual structures and attention mechanism are employed to enhance the perception of local regions by incorporating multi-scale information; Finally, we utilized the generalized-mean pooling function to aggregate global feature, and place recognition is achieved based on the feature distance. The experimental results on 4 large-scale point cloud datasets demonstrate that RIP-Net not only achieves rotation invariance but also outperforms existing methods in terms of various accuracy metrics. Moreover, the parameter number of the IR-Net is 0.3 million, which is significantly lower compared to existing methods. Experimental results also demonstrate that RIP-Net can achieve accurate place recognition directly using large-scale raw point clouds without any data preprocessing steps. These findings underscore the practical value and promising applications of the proposed RIP-Net method.

Key words: LiDAR-based place recognition, light weight network, rotation-invariant, global localization, deep learning

中图分类号: