测绘学报 ›› 2025, Vol. 54 ›› Issue (1): 75-89.doi: 10.11947/j.AGCS.2025.20240124
• 摄影测量学与遥感 • 上一篇
收稿日期:
2024-04-01
修回日期:
2024-12-11
发布日期:
2025-02-17
作者简介:
王艳军(1984—),男,博士,教授,研究方向为多源遥感数据智能处理。 E-mail:wongyanjun@163.com
基金资助:
Yanjun WANG1,2(), Xuchao TANG1,2, Cheng WANG3, Hengfan CAI1,2
Received:
2024-04-01
Revised:
2024-12-11
Published:
2025-02-17
About author:
WANG Yanjun (1984—), male, PhD, professor, majors in multi-source remote sensing data intelligent processing. E-mail: wongyanjun@163.com
Supported by:
摘要:
深度学习方法已成为基于遥感影像数据的城乡道路网分类提取的主流技术。然而,现有方法存在邻近地物(如植被和建筑物等)混杂遮挡、模型训练时间长、计算复杂度高等问题,并且大多仅关注道路面、边缘线和中心线等独立目标,导致道路分类提取结果精度不高。为了充分利用道路边缘与道路面之间的空间拓扑关系约束特征,本文提出了一种基于道路拓扑关联特征信息的道路面提取网络,记作CAS-DeepNet。首先,基于DeepLabV3+网络架构,改进轻量级MobileNetV2特征提取网络,嵌入基于残差连接的边缘增强模块以捕获道路边缘信息;其次,设计基于密集连接的CS-ASPP结构以提高模型性能;然后,引入通道注意力机制,有效地融合图像中的多分支通道,以提高特征表征能力;最后,通过道路边缘拓扑关联信息构建道路连通性约束,以提升道路网提取结果完整性。在CHN6-CUG和DeepGlobe等数据集进行试验,结果表明,本文设计的CAS-DeepNet与当前流行的U-Net++、DeepLabV3+、D-LinkNet、RoadNet、ACNet和SDUNet等方法相比,在准确率、召回率、F1值和总体精度等评价指标方面更具优势,能够明显提升道路路网提取结果精度与完整性。本文方法可为自然资源调查监测和地理空间环境感知建模提供基础支撑。
中图分类号:
王艳军, 唐徐超, 王成, 蔡恒藩. 基于道路拓扑关联特征的城乡道路面精细提取网络[J]. 测绘学报, 2025, 54(1): 75-89.
Yanjun WANG, Xuchao TANG, Cheng WANG, Hengfan CAI. Urban and rural road surface extraction network based on road topological correlation features[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 75-89.
表2
不同模型在CHN6-CUG数据集与DeepGlobe数据集的结果对比"
数据集 | 模型 | Pre | Rec | F1 | OA | IoU |
---|---|---|---|---|---|---|
U-Net++ | 0.706 7 | 0.746 2 | 0.725 9 | 0.952 7 | 0.569 8 | |
D-LinkNet | 0.747 5 | 0.837 2 | 0.789 8 | 0.969 1 | 0.652 6 | |
RoadNet | 0.760 5 | 0.795 1 | 0.777 4 | 0.967 8 | 0.635 9 | |
CHN6-CUG | DeepLabV3+ | 0.738 8 | 0.810 0 | 0.772 8 | 0.960 5 | 0.629 7 |
ACNet | 0.786 7 | 0.843 4 | 0.814 1 | 0.963 6 | 0.684 1 | |
SDUNet | 0.812 6 | 0.757 2 | 0.783 9 | 0.970 4 | 0.692 7 | |
CAS-DeepNet | 0.781 2 | 0.860 5 | 0.818 9 | 0.974 4 | 0.693 4 | |
U-Net++ | 0.657 5 | 0.723 6 | 0.688 9 | 0.972 3 | 0.525 5 | |
D-LinkNet | 0.669 1 | 0.759 3 | 0.711 3 | 0.971 8 | 0.552 0 | |
RoadNet | 0.661 3 | 0.745 6 | 0.700 9 | 0.972 0 | 0.539 5 | |
DeepGlobe | DeepLabV3+ | 0.726 9 | 0.738 3 | 0.732 5 | 0.967 0 | 0.578 0 |
ACNet | 0.743 3 | 0.772 7 | 0.757 7 | 0.970 3 | 0.589 7 | |
SDUNet | 0.774 4 | 0.752 8 | 0.763 4 | 0.969 8 | 0.605 8 | |
CAS-DeepNet | 0.743 5 | 0.789 2 | 0.765 6 | 0.976 4 | 0.578 0 |
表4
在CHN6-CUG数据集上的消融试验"
试验 | CEEM | CA | ECA | CS-ASPP | Mob-DeepLabV3+ | DeepLabV3+ | Pre | Rec | F1 | OA | IoU |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | √ | √ | 0.748 2 | 0.773 1 | 0.760 4 | 0.964 5 | 0.613 3 | ||||
2 | √ | √ | √ | 0.754 9 | 0.794 6 | 0.794 5 | 0.955 4 | 0.619 7 | |||
3 | √ | √ | 0.761 1 | 0.769 3 | 0.765 2 | 0.957 1 | 0.619 8 | ||||
4 | √ | √ | √ | √ | √ | 0.781 2 | 0.860 5 | 0.818 9 | 0.974 4 | 0.693 4 | |
5 | √ | 0.711 0 | 0.769 4 | 0.739 0 | 0.961 1 | 0.586 1 | |||||
6 | √ | 0.738 8 | 0.810 0 | 0.772 8 | 0.960 5 | 0.629 7 |
表5
CHN6-CUG数据集中不同算子构建边缘增强模块的消融试验结果"
模型 | Pre | Rec | F1 | OA | IoU |
---|---|---|---|---|---|
Prewitt+Mob-DeepLabV3+ | 0.739 8 | 0.732 3 | 0.736 0 | 0.957 6 | 0.582 4 |
Laplacian+Mob-DeepLabV3+ | 0.744 2 | 0.740 8 | 0.742 5 | 0.961 0 | 0.590 5 |
Robert+Mob-DeepLabV3+ | 0.745 8 | 0.760 9 | 0.753 2 | 0.958 0 | 0.604 2 |
Sobel+Mob-DeepLabV3+ | 0.747 1 | 0.768 7 | 0.757 7 | 0.957 5 | 0.610 0 |
Canny+Mob-DeepLabV3+ | 0.748 2 | 0.773 1 | 0.760 4 | 0.964 5 | 0.613 3 |
[1] | WANG Weixing, YANG Nan, ZHANG Yi, et al. A review of road extraction from remote sensing images[J]. Journal of Traffic and Transportation Engineering (English Edition), 2016, 3(3): 271-282. |
[2] | CHEN Ziyi, DENG Liai, LUO Yuhua, et al. Road extraction in remote sensing data: a survey[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102833. |
[3] | 罗巍, 王东亮. 利用角度纹理特征提取高分辨率遥感影像中城市主干道路[J]. 中国图象图形学报, 2017, 22(11): 1584-1591. |
LUO Wei, WANG Dongliang. Method using the angle texture feature to extract urban trunk road information from high-resolution remote sensing images[J]. Journal of Image and Graphics, 2017, 22(11): 1584-1591. | |
[4] | 戴激光, 杜阳, 方鑫鑫, 等. 多特征约束的高分辨率光学遥感影像道路提取[J]. 遥感学报, 2018, 22(5): 777-791. |
DAI Jiguang, DU Yang, FANG Xinxin, et al. Road extraction method for high resolution optical remote sensing images with multiple feature constraints[J]. Journal of Remote Sensing, 2018, 22(5): 777-791. | |
[5] | 林鹏, 阮仁宗, 王玉强, 等. 一种基于面向对象的城镇道路自动提取方法研究[J]. 地理与地理信息科学, 2016, 32(1): 49-54. |
LIN Peng, RUAN Renzong, WANG Yuqiang, et al. Research on extraction of road based on object oriented in an urban context[J]. Geography and Geo-Information Science, 2016, 32(1): 49-54. | |
[6] |
连仁包, 张振敏, 廖一鹏, 等. 结合测地距离场与曲线平滑的遥感图像道路中心线快速提取[J]. 测绘学报, 2023, 52(8): 1317-1329. DOI:.
doi: 10.11947/j.AGCS.2023.20220002 |
LIAN Renbao, ZHANG Zhenmin, LIAO Yipeng, et al. A quick road centreline extraction method from remote sensing images combining with geodesic distance field and curve smoothing[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1317-1329. DOI:.
doi: 10.11947/j.AGCS.2023.20220002 |
|
[7] |
曹云刚, 王志盼, 慎利, 等. 像元与对象特征融合的高分辨率遥感影像道路中心线提取[J]. 测绘学报, 2016, 45(10): 1231-1240. DOI:.
doi: 10.11947/j.AGCS.2016.20160158 |
CAO Yungang, WANG Zhipan, SHEN Li, et al. Fusion of pixel-based and object-based features for road centerline extraction from high-resolution satellite imagery[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10): 1231-1240. DOI:.
doi: 10.11947/j.AGCS.2016.20160158 |
|
[8] | ZANG Yu, WANG Cheng, YU Yao, et al. Joint enhancing filtering for road network extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1511-1525. |
[9] | HE Hao, WANG Shuyang, WANG Shicheng, et al. A road extraction method for remote sensing image based on encoder-decoder network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 16-25. |
[10] | ABDOLLAHI A, PRADHAN B, ALAMRI A. SC-RoadDeepNet: a new shape and connectivity-preserving road extraction deep learning-based network from remote sensing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3143855. |
[11] | ALSHEHHI R, MARPU P R, WOON W L, et al. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 139-149. |
[12] | WANG Qi, GAO Junyu, YUAN Yuan. Embedding structured contour and location prior in siamesed fully convolutional networks for road detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(1): 230-241. |
[13] |
林云浩, 王艳军, 李少春, 等. 一种耦合DeepLab与Transformer的农作物种植类型遥感精细分类方法[J]. 测绘学报, 2024, 53(2): 353-366.DOI:.
doi: 10.11947/j.AGCS.2024.20220692 |
LIN Yunhao, WANG Yanjun, LI Shaochun, et al. A coupled DeepLab and Transformer approach for fine classification of crop cultivation types in remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 353-366.DOI:.
doi: 10.11947/j.AGCS.2024.20220692 |
|
[14] | SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. |
[15] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[EB/OL]. [2024-02-02]. https://arxiv.org/pdf/1505.04597. |
[16] | BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. |
[17] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
[18] | ZHANG Zhengxin, LIU Qingjie, WANG Yunhong. Road extraction by deep residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753. |
[19] | ZHONG Z L, LI J, CUI W H, et al. Fully convolutional networks for building and road extraction: preliminary results[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing: IEEE, 2016: 1591-1694. |
[20] | LU Xiaoyan, ZHONG Yanfei, ZHENG Zhuo, et al. GAMSNet: globally aware road detection network with multi-scale residual learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 340-352. |
[21] | MEI Jie, LI Roujing, GAO Wang, et al. CoANet: connectivity attention network for road extraction from satellite imagery[J]. IEEE Transactions on Image Processing, 2021, 30: 8540-8552. |
[22] | CHENG Guangliang, WANG Ying, XU Shibiao, et al. Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3322-3337. |
[23] | YANG Xiaofei, LI Xutao, YE Yunming, et al. Road detection and centerline extraction via deep recurrent convolutional neural network U-Net[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7209-7220. |
[24] | JING Ran, GONG Zhaoning, ZHU Wending, et al. Island road centerline extraction based on a multiscale united feature[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11: 3940-3953. |
[25] | XU Zhenhua, SUN Yuxiang, LIU Ming. iCurb: imitation learning-based detection of road curbs using aerial images for autonomous driving[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1097-1104. |
[26] | ZHOU Linying, ZHOU Zhou, NING Hang. Road detection based on edge feature with GAC model in aerial image[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2021, 35(14): 81-93. |
[27] | LIANG J, HOMAYOUNFAR N, MA W C, et al. Convolutional recurrent network for road boundary extraction[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. |
[28] | SHAO Zhenfeng, ZHOU Zifan, HUANG Xiao, et al. MRENet: simultaneous extraction of road surface and road centerline in complex urban scenes from very high-resolution images[J]. Remote Sensing, 2021, 13(2): 239. |
[29] | WEI Yao, ZHANG Kai, JI Shunping. Simultaneous road surface and centerline extraction from large-scale remote sensing images using CNN-based segmentation and tracing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8919-8931. |
[30] | LIU Ruyi, MIAO Qiguang, SONG Jianfeng, et al. Multiscale road centerlines extraction from high-resolution aerial imagery[J]. Neurocomputing, 2019, 329: 384-396. |
[31] | CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of 2018 Computer Vision European Conference. Cham: Springer, 2018: 833-851. |
[32] | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1800-1807. |
[33] | CANNY J. Acomputational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679-698. |
[34] | SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520. |
[35] | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. |
[36] | HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261-2269. |
[37] | HOU Qibin, ZHOU Daquan, FENG Jiashi. Coordinate attention for efficient mobile network design[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708-13717. |
[38] | HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141. |
[39] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of 2018 Computer Vision European Conference. Cham: Springer, 2018: 3-19. |
[40] | ZHANG Qinglong, YANG Yubin. SA-Net: shuffle attention for deep convolutional neural networks[C]//Proceedings of 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Toronto: IEEE, 2021: 2235-2239. |
[41] | WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539. |
[42] | ZHU Qiqi, ZHANG Yanan, WANG Lizeng, et al. A global context-aware and batch-independent Network for road extraction from VHR satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 353-365. |
[43] | DEMIR I, KOPERSKI K, LINDENBAUM D, et al. DeepGlobe 2018: a challenge to parse the earth through satellite images[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018. |
[44] | ZHOU Zongwei, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867. |
[45] | ZHOU Lichen, ZHANG Chuang, WU Ming. D-LinkNet: linkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 192-1924. |
[46] | LIU Yahui, YAO Jian, LU Xiaohu, et al. RoadNet: learning to comprehensively analyze road networks in complex urban scenes from high-resolution remotely sensed images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 2043-2056. |
[47] | DING Xiaohan, GUO Yuchen, DING Guiguang, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1911-1920. |
[48] | YANG Mengxing, YUAN Yuan, LIU Ganchao. SDUNet: road extraction via spatial enhanced and densely connected UNet[J]. Pattern Recognition, 2022, 126: 108549. |
[49] | PREWITT J M S. Object enhancement and extraction[J]. Picture Processing and Psychopictorics, 1970, 10: 75-149. |
[50] | MARR D, HILDRETH E. Theory of edge detection[J]. Proceedings of the Royal Society of London Series B, Biological Sciences, 1980, 207(1167): 187-217. |
[51] | ROBINSON G S. Edge detection by compass gradient masks[J]. Computer Graphics and Image Processing, 1977, 6(5): 492-501. |
[1] | 刘万增, 陈杭, 任加新, 张兆江, 李然, 赵婷婷, 翟曦, 朱秀丽. 基于混合智能的街景影像知识提取方法[J]. 测绘学报, 2024, 53(9): 1817-1828. |
[2] | 徐涛, 杨元维, 高贤君, 王志威, 潘越, 李少华, 许磊, 王艳军, 刘波, 余静, 吴凤敏, 孙浩宇. 融合图卷积与多尺度特征的接触网点云语义分割[J]. 测绘学报, 2024, 53(8): 1624-1633. |
[3] | 蒋亚楠, 郑林枫, 许强, 汤明高, 朱星. 机理引导下的阶跃型滑坡位移预测深度学习模型[J]. 测绘学报, 2024, 53(6): 1128-1139. |
[4] | 彭代锋, 翟晨晨, 周顶蔚, 张永军, 管海燕, 臧玉府. 基于金字塔语义token全局信息增强的高分光学遥感影像变化检测[J]. 测绘学报, 2024, 53(6): 1195-1211. |
[5] | 丁少鹏, 卢秀山, 刘如飞, 杨懿, 顾海燕, 李海涛. 联合目标特征引导与多重注意力的建筑物变化检测[J]. 测绘学报, 2024, 53(6): 1224-1235. |
[6] | 纪长琦, 郭肇捷, 孙海丽, 钟若飞. 基于移动激光扫描的地铁隧道渗漏水定位及快速检测方法[J]. 测绘学报, 2024, 53(6): 1236-1250. |
[7] | 孙根云, 孙超, 张爱竹. 融合多尺度与边缘特征的道路提取网络[J]. 测绘学报, 2024, 53(12): 2233-2243. |
[8] | 江宝得, 黄威, 许少芬, 巫勇. 融合分散自适应注意力机制的多尺度遥感影像建筑物实例细化提取[J]. 测绘学报, 2023, 52(9): 1504-1514. |
[9] | 张艺超, 郑向涛, 卢孝强. 基于层级Transformer的高光谱图像分类方法[J]. 测绘学报, 2023, 52(7): 1139-1147. |
[10] | 胡功明, 杨春成, 徐立, 尚海滨, 王泽凡, 秦志龙. 改进U-Net的遥感图像语义分割方法[J]. 测绘学报, 2023, 52(6): 980-989. |
[11] | 顾小虎, 李正军, 缪健豪, 李星华, 沈焕锋. 高分遥感影像双通道并行混合卷积分类方法[J]. 测绘学报, 2023, 52(5): 798-807. |
[12] | 胡明洪, 李佳田, 姚彦吉, 阿晓荟, 陆美, 李文. 结合多路径的高分辨率遥感影像建筑物提取SER-UNet算法[J]. 测绘学报, 2023, 52(5): 808-817. |
[13] | 余东行, 徐青, 赵传, 郭海涛, 卢俊, 林雨准, 刘相云. 注意力引导特征融合与联合学习的遥感影像场景分类[J]. 测绘学报, 2023, 52(4): 624-637. |
[14] | 姜明, 张新长, 孙颖, 冯炜明, 阮永俭. 全尺度特征聚合的高分辨率遥感影像变化检测网络[J]. 测绘学报, 2023, 52(10): 1738-1748. |
[15] | 方莉娜, 王爽, 赵志远, 付化胜, 陈崇成. 车载激光点云中交通标线自动分类与矢量化[J]. 测绘学报, 2021, 50(9): 1251-1265. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 98
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 168
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||